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ABSTRACT 

The problem of scattering of a scalar plane wave by a spheroid of revolution 

is solved for either Dirichlet or Neumann boundary conditions, arbitrary major to 

minor axis ratio, and arbitrary incident direction.   The solution is obtained by using 

an Iterative method applied to solutions of the corresponding potential problem and 

is expressed as a series of products of Legendre and trigonometric functions, and 

ascending powers of wave number.   A recursion relation for the coefficients in this 

series is derived.   These results are employed to calculate the scattering cross sec- 

tions for 2:1,  5:1, and 10:1 prolate spheroids. 

—     iii 
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I 
INTRODUCTION 

This report presents the complete low frequency expansion of the field scat- 

tered when a scalar plane wave is incident from an arbitrary direction on a spheroid 

of revolution (prolate, oblate, or disc), on which either Diiichlel or Neumann boun- 

dary conditions are imposed.   The expressions for the field are valid everywhere in 

space and for all values of the ratio of spheroid dimension to wavelength within the 

radius of convergence of the low frequency expansion. 

The work began as a demonstration of the efficacy of a recently derived tech- 

nique for solving boundary value problems for the Helmholtz equation by iterating 

the Green's function for Laplace's equation.   This new method had been applied to 

the problem of scattering by a sphere both for a Dirichlet boundary condition (Klein- 

man, 1965) and a Neumann boundary condition (Ar and Kleioman, 1966).   The prolate 

spheroid was selected to provide a more substantial test of these methods, which 

proved to work even better than anticipated. 

The problem of scalar scattering by a prolate spheroid for both Dirichlet and 

Neumann boundary conditions has been extensively treated.   F.B. Sleator (1964) pre- 

sents an exhaustive bibliography.   Exact solutions are known in terms of spheroidal 

wave functions and both low and high frequency approximations have been found.   The 

standard methods for obtaining low frequency approximations, either by direct ex- 

pansion of the terms of the spheroidal function series in powers of wave number or 

by determining each term in the expansion as the solution of a potential problem 

(cf. Noble,  i%2), are somewhat cumbersome.   One may question the purpose of 

finding low frequency expansions if the exact solution is known.   The answer lies in 

the complexity of the spheroidal functions which make analysis and computation dif- 

ficult. 

The present approach, although certainly not a trivial calculation, avoids 

entirely the use of spheroidal functions on the one hand and, on the other, obviates 

1 
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the need for solving more than one potential problem.   The solution is found in the 

form of a series of products of spheroidal potential functions, i.e. Legendre func- 

tions, whose coefficients are determinated iteratively.   While this m itself might be 

ample justification for presenting the results, their value is considerably enhanced 

by the fact that a recurrence relation for the coefficients is found.   This means, in 

effect, that the iteration process may be carried out completely and the complete low 

frequency expansion obtained. 

This is carried out explicitly for a plane wave incident from an arbitrary 

direction on a prolate spheroid for both Dirichlet and Neumann boundary conditions, 

In addition to exprsssions for the field valid everywhere in space, the simplifications 

occurring in the limiting cases of far zone and nose-on incidence are explicitly given 

as is the expression for scattering cross section.   The corresponding results for an 

oblate spheroid and the important limiting case, the disc, may be obtained by a sim- 

ple transformation and these results are also presented explicitly.   Some numerical 

calculations of scattering cross sections of prolate spheroids have been carried out. 

These results are presented and compared, where possible, with existing data. 

In Section II, the iteration method is adapted to take advantage of the symme- 

try of prolate spheroid geometry.   The method is applied to the Dirichlet problem 

for the prolate spheroid in Section HI and the Neumann problem in Section IV.   Sec- 

tion V contains the detailed analytic results for oblate spheroids and discs.   The 

numerical calculations for prolate spheroids are presented in Section VI.   Much of 

the detailed mathematical analysis has been relegated to a series of appendices in 

the hope of making the method and the results more accessible. 

This work was supported by the Air Force Cambridge Research Laboratories 

under contract AF 19(628)-4328 and by the National Science Foundation under Grant 

No. GP 6140. 
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II 
GENERAL CONSIDERATIONS 

In this section we present the problem, the method of attack, and some def- 

initions essential to a clear understanding of the procedures followed. 

The problem we are concerned with is the determination of the scattered 

field which results when a plane wave of arbitrary incidence impinges upon a pro- 

late spheroid.   With respect to a rectangular system of coordinates (x, y, z), the 

prolate spheroid is oriented with its axis of revolution (major axis 2a) coinciding 

with the z-axis, and its geometrical center at the origin.   The minor axis is 2b. 

Then the relations between prolate spheroidal coordinates (£, r}, ft) and rectangular 

coordinates (x, y, z) are 

r~2 2 
x = c^(C -l)(l-rj ) cos0 

y = c/(?2-l)(l-r1
2) sinp 

z = c?rj 

(2.1) 

(2.2) 

(2.3) 

where c is half the interfocal distance of the spheroid, and l^?<oo, -l<r)<+l, 

O<0<27r. The surfaces i- = constant represent confocal prolate spheroids. The 

metric coefficients of the spheroidal variables are given by by 

hrc 
C2-l 

h^ = c /(52-l)(l-T]2) (2.4) 

Having defined the prolate spheroid, we now turn to the definition of the incident 

plane wave.   Without loss of generality, we take the x-z plane as the plane of inci- 

dence.   The direction of propagation forms an angle 6   with the positive z-axis, 

For a detailed discussion of the geometry of the prolate spheroid see Sleator (1964) 
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P(x,y, z) 

*>y 

FIG. 1-1 

(see Fig. 1-1), and, if p is the observation point with coordinates (r, 9,0),  we 

write 

i, .       -ikrcosO 
u (p) = e 

where u (n) denotes the plane wave as observed at p and 

cos0 = cos0cos9 + sin 0 sin ö  cos0 . 
o o 

(2.5) 

(2.6) 

When 6   is reduced to zero, the plane wave is seen to propagate along the negative 
-iut, 

z-axis.   The time dependence is harmonic (e      ). 

We now state the problem: 

Let S designate the surface of a prolate spheroid with surface coordinate 

J- ,  and let V be the volume exterior to it.   Designate by V the ynion of S and V: 
s 

V = SUV.   Finally, let u (p) be the resulting scattered field due to the presence of 

the prolate spheroid.    We wish to determine a function u(p) such that 
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(i) 

(ii) 

(iii) 

(iv) 

or 

i s -•'■■ 
u(p) = u(pjl + u (p) ,       pe V 

(V2+k2)ui '(p) = 0,       peV 

= 0 

(2.7) 

(2.8) 

(2.9) 

Either 

(a) u(p ) = 0 . 
s 

au(p ) 

p eS 
s 

p eS 
s 

(2.10a 

(2.10b 

-iwt 
Equation (2.9) implies a suppressed time harmonic dependence e . Moreover, 

boundary condition (2.10a) refers to the Dirichlet problem and (2.10b) to the Neu- 

mann problem and the two problems will be treated separately. 

The approach employed in solving the problem is based on a new method of 

finding iterative solutions of the Helmholtz equation (Kleinman, 1965; Ar and Klein- 

man, 1966).   Inherent to this method is the assumption of long wavelength compared 

to the dimensions of the scatterer.   The original iteration scheme was phrased in 

spherical coordinates and much of the analysis depended upon expansions in these 

variables.   Here we essentially rederive these results in prolate spheroidal coor- 

dinates in which form the iteration becomes more tractable. 

We start with a representation theorem (Kleinman, 1965; Ar and Kleinman, 

1966): 

Theorem: Any function uHp),  defined for all pe V, which is twice differentiable in 

V, and regular at infinity satisfies the integral equation 

« 

•    ■* 

■■ 
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^v Js 
(2.Ua) 

where G    is the normalized static Green's function of the first kind, and the inte- 

gral equation 

^ \   ^^I'Pv^Pv^A  G>i'Ps,^s)dS' (2.11b) 

N 
where G    is the normalized static Green's function of the second kind.   The normal o 
ized static Green's function G (p , p) of either kind is defined as follows: 

(i) VG (pifp)= 6(p1|p) . 
o   1 1' 

(ii) G(ptp)    regular at infinity 

p   peV 

(2.12) 

(iii) (a)  GD(p   n ) = 0 (first kind) 
o    1    s 

9    N 
(b) — G  (p,, p ) = 0    (second kind) . 

on    o    1    s 

The normal is directed out of the volume V.   Moreover, we define a function f(p) to 

be regular at infinity if it satisfies the Kellog (1929) conditions 

lim      rf(p)  <ao   and      lim 
r—>a) r—»oo 

28M 
r     3r <oo . (2.13) 

O<£0<27r . 

Using expressions (2.4), it can be readily shown that in prolate spheroidal coor- 

dinates 
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^ TtiM'-'^'^-'^b^-M 
dV = c3(C2-n2)d€dr)d0 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

The function we wish to substitute in the representation theorem equations is 

the scattered field u (p).   This function, however, is not regular at infinity but, as 
—iicc(l? —TI) s 

we have shown in Appendix A, the function e u (p) is.   For this reason we 

dS 
2wr2 

1) dir 

J 
dn ft-1 .2     2 

3 

let 
, .       -ikc(?tT)) s. . uXp) = e u (p) (2.18) 

in equations (2.11a) and (2. Jib).   From (2.14) and the Helmholtz equation (2.9) we 

have 

r,2 j v 2ik V w(p) = - 
/c2    2x C(5   -T) ) 

(t;2-i)^;<n2.i)^ + (^r,Mp) (2.19) 

Substitution of equations (2.15), (2.16), (2.17) and (2.19) in (2.11a) and (2. lib) gives; 
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»oo     r+1     o27r 

UPj) = -2ikc 

r+l    n2n 

dA   dr,\   d0G^plfp)|(c2-i)^);(n2-i)~Ei+(?+nM^] 

s +1     r27r 

c(Cs-l)\    dn^    ^P8)TfOo(Pvp8), (2.20a) 

for the Dirichlet case, and 

oo     r+l     r2ir 

lApJ = -2ikc   \    d? ^ \     drA     0Gyvp)^2~l}^ lirf-V^HtZvUp) 

+c(?s
2-i)^ drA ^yvp8)-i-s*p8). (2.20b) 

for the Neumann case. 

These are the integrodifferential equations that we have to solve.   The first 

one involves the normalized static Green's function of the first kind (Dirichlet boun- 

dary condition) defined by (2.12) and given by 

VT 

co      n 

4irc Grip,. P) = - TT: Z^ Z-. <-»"%«"+1) [|f^i] coS m(01- 0) 
n=0 m=0 

P inJP (n) n    1    n 

n    1    n        I     pm 

m,» v    n    1    n 

n        n    1 
n    s 

?>?, 

(2.21) 

J?<?1 

jSee for example, Morse and Feshbach (1953, p. 1291).   The existing differences are 

due to a different normalization and a different definition of the Legendre functions. 
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The corresponding Green's function of the second kind is of similar form except for 

involving the ratio of the derivatives of Legendre functions so thai the boundary con- 

dition (2.12.iiib) is satisfied!]   Equation (2,20b) involves the normalized static 

Green's function of the second kind (Neumann boundary condition) defined by (2.12) 

and given by 

oo      n 

n-u   m=u ^ 

r^Dm/c \^m/rr 

n    1    n 

n    1    n       I     pm( 

R   s   cA-JcA?) 
!     Q

m(? )'    n  J1    n 

^py<{h)J n s       J?<? ^     n        n    1 -' 

?>?, 

,   (2.22) 

1 

where a prime on a function denotes differentiation with respect to C .   The symbol 
s 

e     is the Neumann factor defined by m 

e    = 
m (2.23) 

1, m = 0 

2, m = 1, 2, 3, .,. 

The associated Legendre functions are defined as follows: 

r>m/ \        1 Hn+m-H)      .,     2,m/2   „ . l       , ,   l-u, 
Pn^) = 2-^na-m+l)nm-H)(1^)        2 ^m-n. n + m + l; m+l;-^ ). 

jjU-l| <2 .        (2.24) 

jn, 
r{n+h 

n—f \     '?■" 2' . 2  1>m/2  n-m   „ fm-n+l   m-n   1 1N 
Pniß)-2   nn-m+Dni/^^-^       ^        2^1"^"'~2";2-n: "2 j ' 

|/u|>l; iarg(/u+l)i<7r   . (2.25) 

i-1. 
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Qm(M) 
Q 

V2 (-l)m r(n-Hn-nr(l/2) 0* -l)1"^        fn+m+2   n-Hn+1        3    A 
„tt+l r.  ^3., ttfm+1      2  IV    2      '      2        ;n   2:   2/' 

|M|>l;|arg</i-l)|<ff  . (2.26) 

rc+f) 

Definitions (2.25) and (2.26) agree with those given by Magnus and Oberhettinger 

(1949, pp 64 and 60, respectively), while (2.24) differs by a factor of (-1)   . 

lows: 

To solve the integrodlfferential equations (2.20) for u(p) we proceed as fol- 

We write uXp) as a power series in k of the form 

op 

u(p)= X] 
M=0 

(-ike)   w.-tp) 
M 

and we substitute in equations (2.20) to obtain an iteration scheme for uw(p).   We 
M 

subsequently show that these coefficients of k are of a particular form and develop 

recurrence relations through which w   (p) can be found for arbitrary M. 

10 
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m 
THE DIRICHLET PROBLEM 

3.1  The Iteration Scheme 

The appropriate integrodifferential equation for the Dirichlet problem is 

(2.20a) which we repeat here for convenience 

oo     p+1     n2ir 

uXPj) = -2ikc d?\    dn\     d0G°(Prp)^2-l)^ + (n
2.l)^+(5^nMp) 

JC     J-i    Jo 
s 

p+1     r2ir 

-c(^-l)\    dr,\     dMpJ-J-G?(p„Poy . (3.1) s'3C    o^rv 
s 

The appropriate Green's function is given by (2.21) and the boundary condition satis- 

fied by uXp) is seen to be, from equations (2.7), (2.10a) and (2.14), 

.        -ikc(?8tr]) 
u(ps) = -u (ps)e 

i. 

(3.2) 

The incident plane wave u (p) is given by (2.5) which can be written in prolate spher- 

oidal coordinates as 

i, .       -ikrcosO 
u (p) = e = e 

Denote the surface integral of (3.1) by I (p): 

-ike cosG  Cl + sinö  y? -1  Jl-rj   cosjft 
(3.3) 

p+1    p27r 

I8(p1)=-c(?^i)\     A     dMP^gf-G^l'V • (3.4) 
J-l     Jo '      "* 

In Appendix B we show that I (p..) may be written in the following form 

11 

■i     '* 
> 

■ 
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where 

-ike? 
lV)=e        8 

M       i 

M=0 
ikc)«^^) (3.5) 

i=0  m=0 s    i     i    £     i i 
(3.6) 

with 

^  cose   -1\ 
vM ,m/   s o 

r        /—   "s o 

AJ
1
'^? ) = 

i s 

(? tcosö r /4      ., "i V? -cose 
(2f i 1) ^    m^     -X 3 o 

m- „M+i Mi+m): TM-iVp/'M+i \ jXTnäT" 
V 2 y-' v 2    2yQilv 

M + i even 

0 ,        M + i odd . 
(3.7) 

Note that L, is independent of k.    Moreover, let 
M 

+ick? 
0(p ) = e dp ) 

where ^p.) is assumed to have a power series expansion in k of the form 

(3.8) 

^p) 
M=0 

(-ikc)^1^?) . (3.9) 

Substitution of (3.9) in (3.8) and the resulting equation together with (3.5) in (3.1) 

gives 

12 
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OP oo poo     p+1     p2T 

/   . (-ikc)M^  (p ) = -2ikc2  /_, (-ikc)M \    dC \    dr) \    d0 GD(p , p) M=0 M=0 i      J.!     Jo 0 

00 

+ ^](-ikc)M4(p) 
fco ^  1 

The interchange in differentiation and summation, and summation and integration 

was made by assuming (3.9) to converge absolutely and uniformly and to be term by 

term differentiable with respect to each of the variables and the resulting series to 

be uniformly and absolutely convergent.   Collecting the coefficients of equal powers 

of k in the above equation, we arrive at the following iteration scheme: 

W = >>!' 
NOO     n+1     o2ir 

D, 
Wpi) = 2c\ dM dr}\ ^VPi-p) 

■1    Jo 

+ (S + r#M(p) 

(3.10a) 

+ IM+1(P1) '   M=0'1'2. •••    O.lOb) 

3.2  The Recurrence Relations 

We shall now solve for the M+ 1st iterate in (3.10b).   In order to do this we 

need to establish the fact that tp    may be written as 

M     M     t 

Vp) = ^ Z2] of'(? )Ql(C)pJ(n)cosi0 
t=0   r=0 i=0     r'1     s    r      l 

(3.11) 

for all M (M = 0,1, 2,...).   This is accomplished using the principle of mathematical 

induction, that is, first we show that (3.11) holds for M -0 and secondly we show 

that if it holds for M,  it also holds for M+l. 

       13 ■■  

■- 

t 
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That the representation holds for M = 0 is obvious since, with equations 

{3.10a) and (3.6). 

^(p)=A0'0(C )Q(?) O O       s    o (3.12) 

which clearly is of the form (3.11). 

Next assume that (3.11) holds for M.   We wish to show that ^      (p) may 

then be written as 

M+l    M+l     t 

WP)= S   ZiSö^'^VQ^Pt^cosi^ 
t=0     r=0   i=0       ' 

The analysis which establishes this is somewhat tedious; however, in the process 

we actually arrive at an expression for D^1'    in terms of DM'1 which in fact is 
r, t r,t 

the major goal of this section. 

First note that the second term in (3.10b) has already been shown to be of the 

form (3.11) [see (3.6), (3.7)].   Next denote the volume integral of (3.10b) by 

I^j^p,,) and substitute in it the Green's function of (2.21).   Then, 

oo      n 

n=0 m=0 Cv 
vOO +1 v27r 

d?C^(?,? ,? )\    driPm(r7) n        1    s   \ n icosm(jl)-jn 

■1 

" 2      ^M^ 

2       ^M(P) 

+ (n -1)" an    +{?^^M(P) (3.13) 

where 

14 
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§>?, 

?<€, 

Substitution of (3.11) in (3.13) leads to 

oo      n     M     Mt 

^+1   1 2,rWfeotoWt^ m Un+mHj 

. (3.14) 

^00 '+1 

• DM'/(6 )Pm( r.t^s^S^   **Cn^V*A   ***> 
>-i 

s 

»2ff 

d0cosm(0-0 )cosi0 

)0 

" 2        I     dQir(?)        2        i      dP!w 
(?- l)P:(n) --£- + (n - DQJC) tw"    d€ r        dr) 

+ (?;ri)Qi
r(?)pJ(T1) 

Performing the angular integration and rearranging terms we get 

oo    M    M      t 

n=0 t=0 r=0   1=0 ün+*;.J r,t    s 

pOO p+l ^ 

•Pn(VC0S^l\    d^'VV\    ^P>{[(?2-1)^+?]P^) 

J ( r Q~J5); [in2- D ^ +r7]p^ri)Q£
r(c7j' 

15 

(3.15) 

■; 

i 
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To perform the rj integration we use the relation (Magnus and Oberhettinger, 1949, 

pp (51-62) 

dz   n t 

P[(z? 

V2)j 

_ (n-HKn-i-H) 
' 2n+l 

n(n+i) 
2n+l 

't^ 
Qn-l(z) 

n+1 

.<+l(zl 

;   n.i = 0.1,2,...      (3.16) 

Substituting this relation in (3.15), we get 

oo    M    M      t 

n=0   t=0 r=0   i=0 Un + *J.J     r, t     s    n   1 r\ 

CO /->+l 

d?Cn(^l'V\    d^P>^ 
_ (t+lHt-i + l)   i   . , i/(.v 
+ —zTTi Pt+l(^r(C) 

y-l)i^]Q>P;(n)t^P>Q^ 

oo   M+l   M       t 

—Z^SXW^+i 
00 

n=0   t=0 r=0   i-0 

.+1 

■ 

Ji 

d€Cl(?'Cl'Vl    d^P^P^n) 

M]2pX)cos^i 

t(t-i) nM,i i 
+   2t-l  Dr,t-l(?S

)Qr(?) 

+ DMr(? ) 

■1 

(?2-l)^^ 
^.(ti^iill^i,     Qi 

r.t "V L"3     *' d?    ^J -V^' " 2t + 3 "r,t+rJs'^r 

16 
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M I 
where in this last expression we have adopted the convention that D   ' (?) is iden- 

r, t    s 
tieally zero whenever any of the subscripts or the other superscript is greater than 

M. We now employ the following orthogonality property for the Legendre functions 

of the first kind (Magnus and Oberhettinger, 1949. p. 54), 

>+l 
J  Ji *TV* / v        2     (n+ih  r dxP (x)P  (x) = T—T 7 ^7 6 n      m 2n+l (n-i)l    nm 

■1 

to obtain 

,00 

■«^^.V^^^M'V^11^^^'^]^ 

r.t     s L d?     J    r (?) 

Employing once more the relation (3.16) in the equation above, we write 

M+l^    M       t^ poo 

t=0   r=0    i=0 \ 

(r+l)(r-i + l)    M.i.       i 
^^ Dr.t(Wl(?) + - t(t-i) nM,i ,, . + iri ^t-i^ 

+ (t+l)(t + i + l)    M.i  ,    > 
2t + 3 r,t+l^s; <^-^<:\<.^ 

(cont'd) 

17 
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M+l   M+l    t 

=-2 H 1LJL.<-»' {ITTI ''W**'*! 
t=ö   r=0 i=0 

rir-l)   M.t 
l^T 0r-l. tV 

- t(t-<) _M.i  .. , + (t-UKt + i-H) nM.i .. . 
+   2t-l     r.t-lV- 2t + 3 r.t+lV 

'00 

(r-MKr-t-i-H)   Mt< ,. ,, 
2r + 3 H-l.rV dCcJu.?^?^^) - 

M'1! 

(3.19) 

In arriving at this last expression, one must bear in mind that D   '  (^ ) is iden- 
r, t     s 

tically zero whenever r, t or i is greater than M.   As shown in Appendix C, 

«oo 

dfc^f^X«?' - <-»' ri^TMÜTI) uTot 
S 

LQt(Cs) 

r^t (3.20) 

Furthermore, whenever r = t in (3,19), the bracketed coefficient is equal to zero. 

This follows from the fact, established in Appendix D, that the relationship 

r, t     s t, r     s 
(3.21) 

holds among these coefficients.   Thus we need not evaluate terms in (3,19) when 

r ^ t.   Substituting, then, (3.20) in (3.19) we get 

18 
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M+l   M+l .     t 

t=o   r=o     *=u L. 

_ t(t-i)    M.i (t+lKt-Hi-H)    M.i 
+ 2t-l    r.t-rV-       2t+3 r.t+l^i ) 

Ir+lXr+i+l)    M,l   . 
2r+3 i+l.tlV 

r'Qr(58>    i i    ~ 
■^S-S(?l)-Qr(?l) 

LQt(Cg) 
Pt(T71)cO8i01 

(3.22) 

where the prime on the summation for r indicates that the term t = r must be de- 

leted.   This may be rewritten as 

M+l   M+l    t 

iwv=5 z 2<+,i,,<v<<51'
p'<''1"

:o8^I •   <3•23, 

where 

r,t        s       r{r 
2 [Hr-i)   M.i . tOj-iiM.i ,, . 

+ l)-t(t + l)  [Zr-l     r-l.tlV+ 2t-l     r.t-l^s' 

4.(t+l)(t+i + l)    M.i (r+l)(r+i+l)    M.i  , 
2t+3 r.t+lvS'" >r+3 r+l/V 

IVITI   I I 

r=(J      O.' 

M+1 '    Ql{t ) Q-(VEM+l.i 
r, t s 

(3.24a 

(3.24b; 

W 
and the prime on the summation indicates that the term r = t must be deleted (see 

Appendix E).   Thus (3.10b) can be written as 

19 
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(3.25) 

where 

r,. r.t        s ' 

=Ef!:i'i(?)+AM+i'i 
t, t s       t 

r = t 

Equation \. .25) is clearly of the form (3.11) which is what we wished to establish. 

Not only have we completed this inductive proof but, in the process, we have derived 
M t 

recurrence relations for the coefficients D   '  (? ): 
r, t     s 

DM+1-'(5) = 
r.t      V      r(r+l)-t(t+l) 2r-l   Dr-l.t(V+ 2t-l   Dr,t-l(V 

+ (t + l)(t + i-H)    M,i   ._ ,    (i-H)(r+/ + l)    M.i  ._ . 
"  2^3 Dr. t+l(?s)' tTTs V1. t(?s) 

r^t 
M = 0,1,2, ... 

(3.26a) 

M+1 • of(? ) 
^D^'V) + At

M+1'X);    M = 0.1,2,... 
r-0   W 

(3.26b) 

with 

20 
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D0j0(C)=A0'V). o, o   s        o      s (3.26c) 

(see equation 3.12) 

We are now 

equations (2.18). (3.8). (3.9) and (3.11) we have 

We are now ready to write the expression for the scattered field u (p ).   By 

+ikc(?1+n1) 
u (p^ = e * uXp^ 

-ikc?s +ikc(C1+TJ1) 
= e e ^p ) 

-ikc?s +ikc(?1in1) 
e e 

M-0 
ike)   ^(pj) 

ikc^j   -ikc(Cs + r71) 
= e        ' e 

oo M     M       t 

M=0 t=0 r=0   1=0      ' 

Q^?1)P^1)cosi0i (3.27) 

-ikc(? +r) ) 
If we expand e J in a power series of k and employ the Cauchy formula 

for the product of two infinite series, the above expression becomes 

u (p ) = e 

.,   ,.     oo n    ._  _     .n-M    M    M       t 

n=0 M=0       Kn   m'-      t=0 r=0   1=0      r' V 

Qr(?l)Pt(nl)c0Si^ ' (3.28) 

21 
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M i 
where, in both of the above equations.   D   '  (f ) Is given by equations (3.26a, b, c) 

Mt r.t     s 
and, in turn.  A   ' (C ) is given by (3.7), 

l s 

3,3  The Far Field and the Scattering Cross Section 

From the definition of Qm(C) in (2,26) and (3,28) the far field is given by 

ikcf      CD n-M     M      t 

?1       n=0 M-0      K        '•        t=0   i=0 0't 

P^cosl^    . (3,29) 

Since the incident wave is of unit amplitude and  r ->■ c? in the far field, the scatter- 

ing cross section is given by 

CD 

..        .     2.2 I sf.    .i2      .     2 \   '    .,   ,n sf.    . 
=     lim    4jrc f    u   (p )    = 47rc    /   .(-ikc)  u   (p.) 

e     v _ I'll t—x* n    1 ?,-»a) ' n=0 
(3.30) 

where 

n    ,_  _    .n-M    M      t 

M=0        * '"       t=0  i=0 o,i     s    .    i 

(3.31) 

Assuming k real, we can rewrite (3.30) as follows: 

22 
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/^(-ikc^U^n  )      = 4ffC
2  /^(-ikC^U^p,) ./^(-ikC^U^p,) 

n=0 n=0 n 0 

oo oo 

= 4jrc   /   .(-ikc)DuS (p.)/    (-ike)  uS (p ) 
—7r Q     1  *—TT D     1 n=0 

oo 

n=0 

00 

= 4ffc /   .(-ike)   u   (p,)/    (ike)   u   (p.) 
n=0 n=0 

oo 

= 47rc2y](-ikc)n Y] (-l)muSf   (pj/V) 
^—^ *■—7t n-m   1   m   1 
n=0 

oo 

m=0 

2n 

= 4wc !2](kc)2n2](-l)n+muSf     '       Sf 

n=0 m=0 
9n    m^l^P^ zn-m   1   m   1 

(3.32) 

3.4 Nose-on Incidence 

In the case of nose-on incidence (0  = 0) quite a few simplifications occur. 

If we set 0  =0   in (3.7), it becomes obvious from the definition of the 
o 

Legendre function P   (n),  L-l  <2, equation (2.24), that A   '   (?) becomes zero 
n        '       ' is 

unless m = 0,   We then conclude that in the case in which the incident plane wave 

propagates along the z-axis there is no dependence on the azimuthal angle 0.   This 

simplifies the results as follows: 

Equation (3.6) can be written 

M 

(3.33) 

with 

23 
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^0 . M + t odd 

Equations (3.26a. b, c) become 

•y 
M + t even 

(3.34) 

oTSt)--r     2 
r.t     s        r(r+l)-t(t + l) 

+ itlii! DM (^+1)2   M " 
- 2t+3 ^.t^v-^nVi.^v .    r^t 

'    M=0.1,2, 

M+l 
(3.35a) 

C'v-E^TOv-r^—.... 
with 

D:,o«s>-AX) 

(3.35b) 

(3.35c) 

The scattered field,   u8^), becomes 

u (Pj) = e 
ikcf  v^ o      f n_M     ^j     M 

'        ^(-ikc)0 X  1^V_  V1 VnM 
<?s)Qr(?1)Pt(n1) . 

and the far field (3.36) 

sf,    .       e 
ikc?i    co 

"   (P,) - 1 ^ 
1       n-0 

^(f   Tn )n-M    M 
(-ike)" VVV      .V.M,^ 

)   • (3.37) 
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i 

■ 

The expression for the scattering cross section remains the same except for 
sf.    . 

Un(Pl): 

n     ._  _    .n-M    M 
(? +n,) 

%(pi) = 4--i^)r^Do(t
(vpt^> (3.38) 

25 
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IV 
THE NEUMANN PROBLEM 

4.1   The Iteration Scheme 

The appropriate integrodifferential equation for the Neumann problem is 

(2.20b) which we repeat here, 

poo     p+1     n2T! 

Up^-2ikc2\   d?\   dn\    d|JG^(prp)p-i)^;(n2-i)^ 

I?     J-i Jo 
p+l     P27r 

+(f;r1)u(p) + c(^-i)\    dn \    d^G^p^p 

O-i   Jo s 
(4.1) 

.N, 
with G  (p , p) given by (2.22).   The appropriate boundary condition is given by 

(2.10b), which through equations (2.17) and (2.18), may be written, 

ikc(?  tq) 

c-'?s
2-n2 a?s 

u (p ) + e 
s .3- u(ps) i = 0. (4.2) 

Excluding the case in which the prolate spheroid degenerates to a wire of finite 

length (C   = 1),  we can write 
s 

a    r . il:c(?stn)       -i 
— ^(Ps) + e '       .Xp) 

s L- 
= 0 (4.3) 

from which 

aw(p ) 
s ■ikcw(p ) - e 

-ikc(?  in) au(p ) s s 
a?. (4.4) 

Substitution of (4.4) in (4.1) leads to 
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Sao    r*l    p2ff 

d? \  dn \   d^G^Pj. p) f(?2-1) ^ ; (n2-1) 

?    J-i   Jo 
s 

S+l    p2ff 

dr)\    dMP )GN(pi.p ) 
1 S       0      1      s 

-i Jo 

an 

•■-.- P+1   r2,r a h   ) 

c(e2-i)e'iKe'8\   dn\   d0e;ikc^(p1.ps)-UP8 

9?. 
■1   Jo 

(4.5) 

■• 

Denote by I (p ) the second surface integral in (4.5) 

I8(p1) = -e(?f~l)e 
X s 

.,   .   .v+l    p27r . L    . ■ike?  \        \ _..        .. du (p ) 
-      A   d^+^Go

N(prP8)^ 
-i   Jo 

(4.6) 

« 

In Appendix F we show that I (p.) may be written in the following form 

•ikcf 
CD 

Kp^ = e 
M=l 

(-ikc^I^p^ , (4.7) 

where 

M       i 

fe' 
M.m-    .   m,    .   m 

1=0   m=0 
A;i'm(?s)p;i(r?1)Q;1(?1)cosm01, (4.8) 

with 
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A   '   (? )= -e    JTT Ism' 

(?    -COS0   ) 
s o 

M-l 

„M-H/^M-A . ^Al + f     3Y~mT (2<+l) 
(i-m): 
(i+m): 

/? COS0   tl\ , 

\ s o '       ?  -1 

i cose tr 
m cose tup"1! c

s
+   ° s o «   \ ?     cos 9 

-(f+m)(?  tcose )?, m 
/?   COS0   II 
I   s o 

+ ix-n 

s" o   i-lV C  tcosO    J 
',    for M+ i even, 

(4.9) 

Af'm(?) = 0. 
i s 

for    M + i   odd (4.10) 

From now on,   the procedure for developing an iteration scheme parallels that of 

the Dirichlet problem.   After writing 

ikcf g 
0(p ) = e uXp.) 

and assuming a low frequency expansion in powers of k for C^pJ, 

(4.11) 

GO 

.,   ,M 
MP) - 2-1 (-ikc)  V13^ ' (4.12) 

we substitute (4.11) in (4.12) and the resulting expression together with (4.7) in 

(4.5).    Equating coefficients of equal powers of k,   we obtain the following iteration 

scheme: 

c   (p.) = 0 
o   1 

(4.13a) 

28 
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«36 

^M+1<P1) = 2c\  dC\   dn 

p27r 

-i   Jo 

oo   p+1   p2jr 

-2.1)^;(n2.1)^ 
a? an 

+{?;n¥M(p) 

»+1    r27r 

+ c(Cs
2~i)\  dn\  d^G^.p^^p^ 

1   Jo 

4.2 The Recurrence Relations 

M = 0.1,2.... (4.13b) 

The procedure we shall follow here is practically identical to that for the 

Dirichlet case.   We assume ^..(p,) to be of the form 
M   1 

MM        I 

(4.14) 

which we substitute in (4.13b) and solve for 0W1,(?,).   If (//.,, ,(p,) turns out to be 
M+l    1 M+l    1 

of the form (4.14), then because of ii (p ) being zero we can conclude that (4.14) is 

true. 

The volume integral of (4.13b) is practically identical to that of (3.10b) ex- 

cept for the Green's function.   From equations (2.21) and (2.22) we see that these 

two functions are identical except for their dependence on the surface coordinate f-  . 
s 

If we denote the volume integral of (4.13b) by Iw. «(p,). we can use the result of 

(3.19) and write 
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M-H   M+l     t 

iVmW = -2 ^ S£(-1)f (TTTF KWcost^ 1=0   r=0   i^ii 

Tir-t)   MJ          _ t(t-f)    M.i          + (l + lHt + i^l) . M.f  .. . 
^TDr-l, t^s) + l^T Dr. t-l(?s) " ~ir^  Dr. t+l(?s) 

f GTf 

iI±^r1L^1'M\^^s< (4.15) 

where 

V5-5i-V=-l 
. P (e)Q {^,) ■ 
^ t     n   IV 

P'(C)'   f      (     
?>f. 

(4.16) 

Qf(? )' t   s ? <? 1 

M f 
It is understood in (4.15) that D' ' (t  ) is identically zero whenever r, t or i  is 

r, t     s 
greater than M. 

From Appendix G, 

lO) i 
Ac^ie  c    c i^/c. (-1) (t + f): 
^V^l'V^ = -r(r+l)-t(t + l) ÜTÖT ±7Qt{?l,-Qr(?l) LQ (t )' 

t    s 

r / t  .        (4.17) 

Furthermore, through an inductive argument identical to that given in Appendix D 

for the Dirichlet case, we can show that 

DMM^U^'V) 
r, t     s t, r     s 

(4.18) 

Employing (4.17) in (4. la), we obtain 
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M+l M+l .   t 

^(p^ = -2IX 'E HTTIT^T) fer ^-'i! t< V 

Tl<tzl)DM.i (    )+ (t+Ült+i + l)    M.i 
+   2t-l    r,t-rV"       2t+3 r.t+l^s7 

(r-HHr+i-H)    M.i 
2r+3 rH.fV JLQt(y. 

Pt(n1)co8i01 . 

(4,19) 

Having evaluated the volume integral of equation (4.13b) we now turn to the surface 

integral of the same equation and we denote it by I(p ). 

p+1   p2ff 

Kp^c^-lA   drA   <i0G;\.P8V
Ps) • 

Substituting equations (2.22) and (4.14) in (4.20), we obtain 

ao      n 

(4.20) 

I(P1)=-^ (?
2-i)y]y](-i)mc (2n+i)R^ii4n2 
S
     W^O m L(^Ei):J CV 

M     M     s 

ttttw    r't     *    r   s    n    1 

Pm(? )' 
Pm(n_^_«-Qm

(?) 

-D    8     Qm(?)'    n    S- 

«+1 ^27r 

)(   \    dT]P™(n)p'(n) \   d0cosm(0-01)cosi0 . 

• 1 ^0 

Using equation   (B.4) for the Wronskian and at the same time performing first the 

integration with respect to ^ and then the integration with respect to n according 

to (3.18), we obtain 
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M      M      t 
Q^ ) 

HP ,> =^Z_JZ_IDM;^ )~T-±' Qf<C,)p'(nt)cosf0,  „       (4.21) 
t=0   r-0  f-0 

I     s 

From equations (4.19) and (4.21), it is clear that ^M.Ap,) of (4.13b) is of the form 

given by (4.14).   At this point, then, we not only have concluded the inductive argu- 

ment that the representation (4.14) of <-./?,) is correct, but in exactly the same 

fashion as in the Dirichlet problem we end up with the following recurrence relation- 

ships: 

r.t     lV    Hr+D-Ut+l) 
rir-t)    M,l  ,       - t(t-i)   M.i 
^rTDr-l,t(?s) + irTDr,t-l(V 

-~lITi       Dr.t+i(y-~17T^ DH-i,t(y 

M = 0,1,2,... 

(4.22a) 

CM<v 
M+1-  Q'(5 )• 

r=0     Qt(?s) r=0Q(?,)'    r't     S       t 

L        o 

^1 = 0,1,2, 

M+l.i (V' 

with 

D0'0(n = o, 
o, o   s 

(4.22b) 

(4.22c) 

M. where A   '  (^ ) is given by (4,9a, b).   The prime on the first summation in (4.22b) 

denotes that the term r = t must be deleted. 
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The scattered field u'(p ) lor the Neumann problem is given by the same 

expressions as for the Dirichlet problem (equations (i.27) and ( J.28)) with the under 

standing of course that the coefficients   D   '   (f )   are this time given by equations 
r, t     s o J    M 

(3.22).    The same is true for the far field and the scattering cross section expres- 

sions (see Section 3.3). 

4.3   Nose-on Incidence 

When 9=0, (4.L'a) becomes zero unless m -0.   This is so because of the 
o 

definition of the Legendre function P   (/u) forj/u-l|<2, equation (2.24).   Conse- 

quently, when the incoming plane wave propagates along the z-axis, there is no de- 

pendence of the scattered field on tin. azimuthal angle 0. a result we should expect 

since the z-axis is the axis of symmetry of the prolate spheroid.   Due to the sub- 

stantial amount of simplification, we redefine our results for the Neumann problem 

as follows: 

Equation (4.8) becomes 

(4.23) ^Pl^Z-. At ^s)Pt(r,l)Qt(V '        M^2.3... 

where 

r~ 

Ar«y < 

-/7 M 
(2l + l)(?,±l)M_1 

M + t   odd. 

M + l   even 

(4.24) 

M 
The scattered field u (p ) is given by (3. 3()) with  D'    (f ) given by 
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DM:V > = 
r,t     s       r(r+l)-t(t + l) 

2 2 

inDr-M(y+inD
r.t-i

(v 

"   2t + 3     r.t+rV"   2r + 3     r+LfS'l  '      r^t 
7! M = 0.1,2,.. 

(4.25a) 

Wv - - 
M+1'Q.(0'   „.,       ^Qr<V   „ M+1 v ^v; DMH(f )+y- 
r-0    WJ ,    Qt(? )'    r, t   s      t        s r=0      t   s 

M = 0,1,2,...        (4.23b) 

with 

Du    (?) = 0 o, o   s (4.25c) 

The expression for the far field is the same as the one for the Dinchlet problem 
M 

(equation (3.37)) with D     (? ) as above.   The same is true for the coefficient of the o, t   s 

scattering cross section,   u   (p,),   which is given by (3.38). 
n    1 
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THE OBLATE SPHEROID AND THE DISC 

The method employed in the preceding sections to determine the field scat- 

tered bj a prolate spheroid can be employed in a straightforward manner to deter- 

mine the field scattered by an oblate spheroid.   This is not necessary, however, 

since we can transform the prolate spheroid into an oblate spheroid and utilize the 

results already obtained to determine the field scattered by the oblate spheroid. 

Specifically, if we let ?—*i? and c—>-ic,  the prolate spheroid is transformed into 

an oblate one with the axis of revolution (minor axi.s 2b) coincident with the z-axis of 

a rectangular coordinate systems (cf. Morse and Feshbach, 1953, p. 1502).   The 

ranges of the variables now are 0<:?<GO,  -l^n-^+l. and 0 $: 0 ^ 23r.   Moreover, 

pix, y, z) 

FIG. 5-1. 

if we let £ —*■ 0,  the oblate spheroid degenerates into a disc of infinitesimal thick- s 
ness, radius c (the semifocal distance), and coplanar with the x-y plane.   In the 

remainder of this section we shall treat each body separately. 
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5.1   The Oblate Spheroid 

With the incident field given by (see equation (3.3)), 

i. .       -IkrcosÖ 
u (p) = e = e 

ike c cosö ^ + sine 
l_       o o 

ir-l /l-n2 cos0 

the scattered field is given by (3.28) with ? = i? and c = -ic and can be written as 

follows 
..   ,     <ö n ,._ .n-M   M    M      t 

1 U1 M^O (Q-M)I      ^ttw    *'*      S 

Q^JP^nJcosiA   . 
r    i    t    i i 

(5.1) 

where, for the Dirichlet problem, the recurrence relations (3.26a, b,c) hold among 

the coefficients D   '. (if ), with 
r, t      s 

/- (iCotcos0 ) . 
■etfr     S„.,   0     (2t^l)^^ 

A^(i?3) = 

./i? cos0 ±r 

tV iflcose 
\   s o ' 

,M+1 (t + i):   /M-t^.p/M+t ^ 3\    i..,. .    ' 

M +1 even 

V 
M + t  odd 

(5.2) 

M.' 
For the Neumann problem the coefficients   D   '  (i? )  are related through equations 

r, t      s 
(4.22a, b,c) with 
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MA 
A»''(iV = -^ 

(iC tcosd )M-1 

^e^MT^x (2t + l) 
(t-i): 
(t+i): 

./iC cos0 ±1\ ,      r ./i? cos9 Il\ 
MP(   .f.     °     );-f-    rtigcosö tl)p(   .g%    0fl    ) 

/i? COS0 tlN^I 
-(t+lHi? tcoed )p' ,     .^   0 

s o   t-lV   i? tcos i0 
', 

M+t   even. 

o 

(5.3) 

and 

At
M'i(i?8) = 0. M + t    odd (5.4) 

The prime on Q (if ) in (5.3) implies differentiation with respect to i? . 
t    s . s 

The Legendre function Q (i?,) in (5.1) must now be redefined since ?,  can 
r    1 1 

now assume values between 0 and 1 as well as values greater than 1.   This has 

been done in Appendix H where we show that 

1 

m,   .        (-l)m  r(n + m-H)ni/2)        (g2-H)   2 
m 

Q  (i?) =     ,, n .n+l0m r/  J. 
3 \ 

i     2 l(n+2) c?+ i^r m+l 

^F^n-m+l, |-m; n+|; nf-=-T )-     ?^0. 
2"    (?+ i?2 + l)2> (5.5) 

The far field is given by (5.1) by letting ?  ->oo. 
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ikcc     oa n ., .n-M 
sL    .      e  >    ,  .,   ,n   \    .   .,n-l      s      1 

u   (p.) - ~ /    (-ike)   /    (-i)       -. —— 
1      n^O M-0 

M    _t_| 

t-O    /-O 0,1      s    i    i i 
(5.Ü) 

The scattering cross section is given by (3,30) and,  in the present case, can 

be written in the form 

cu 
i     2\    .     2n \     .  ..n-rm    sf      ,    v sf,    . ..  _. 

a - 4TC   /    (kc)      /    (-1, u0       (pju   (p,) , o.7) 
^—^ ^—^ 2n-m    1    m    1 n=0 m=0 

where we have taken k to be real, and 

n    ...   _     .n-M    M      t 

(5.8) 

Nose-on Incidence: 

When 9   = 0,  we can rewrite (5.1) as follows: 
o 

.   P     oo n ,.„   _     .    M     M 
ikc^.or—i <r—i (i?   +ri) c—* 

(5.9) 

where, for the Dirichlet problem, 
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M+l 2 
r.t (1's   " rlr+l)-t(t+l) 

F    2 2 

2r-l    r-l,t    s      2t-l    r, t-1     s 

+ (t+1)2    M      ....    (r+1)2    M      ... . 
-irTrDr,t+i(i?s)-'^TrVi.t(l?s) 

M+l 

'   M = 0.1,2, (5.10a) 

DtjtÜ?s)=-^   -^|7Dr.t(lV + At     ^S);M = 0.1.2....  (5.1 Ob) 

with 

D0    (i? ) = A0(i? ) . 
O, O      S OS 

(2t+l)(i?  ti)M 

(5.10c) 

AX» = < ^W^WR^Fy M + t even 

V 0 M + t odd (5.11) 

The corresponding expressions for the Neumann problem are, 

2 
M+l.     > __ 2 
r.t U^s;      r(r+l)-t(t + l) 

r  ^   DM.   ,(i?)+    t DM.   M ) 
2r-l   r-l,t    s ^ 2t-l   r,t-l   3s 

+ (t+1)2    M      ... ,    (r+1)2    M      ... " 
2t + 3     r, t+1     s      2r+3     r+1, t    s M = 0,1,2, 

(5.12a) 

C"v = 
M+l.  ^ ..„ ., M     ^  ... . 

r      s ' ' " 
"4,   -^TiiT Dr,. ''V^ ^TIFy Dr,t(lV + A,      »'V ; 
W    «t"5»' r=0   ^t   3s 

D      (i? ) = 0 , 
0,0    s 
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With M 1 

0 , M + t odd    . 
(5.13) 

In both the Dirichlet and Neumann problems the- far field is given by 

ike?,   oo n (p  T    \n~M   M 

h      n=0 M=0 v        ;'        t=0      ' 

(5.14) 

and the scattering cross section be equation (5.7) where in the present case, 

n _     n-M   M 

5.2  The Disc 

As we mentioned earlier, when £   = 0   the oblate spheroid degenerates to a 

disc of radius c in the x, y plane, with center at the origin (Morse and Feshbach, 

1953, p. 1292).   It is easy to verify from the corresponding formulas for the oblate 

spheroid that the scattered field due to the presence of the disc is given by 

.,   „    CD                  n              ,       .n-M    M     M      t 
ikc?,^—i .^T-1      _ ( + n1)  

u (p ) = e 

.    CD n ,       .n-M    M     M      t 

■iT^f^-y-pL- EEE°M> ^—^ 4^-^ (n-M):    /     >/   A'V-TT
1
   r.t n=0 M=0 t-O r=0 i^O 

Q^i^p'tr^cosi^  , (5.16) 
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where, for the Dirichlet problem, the recurrence relations (3,26a, b, c) hold among 

the coefficients D   '  (0),  with 
r,t 

vM 
r 

A*'li0) = S 

-ef* 
(-cos9 ) u   iv t\cosd / 

-... -^T^MTTTI^ • 

M + l even 

V. M + t odd (5.17) 

.M.i, 
For the Neumann problem, the coefficients D   '  (0) are related through equations 

r, t 
(4,22a, b.c) with 

A^'^O) = -e ./F cos 9 
(t cos 0 ) 

M-l 
(t-o: 

0 2M+1(^): r(^p.|)Q>- ' (t-l),• 

(M-t)(t-i + l)P 
t+l\pos0 / 

+(M+t+i)(t -<)p; 
t~lVcos9 / 

o—l 

M + t even , 

A^'ra^O. M + t odd 

(5,18) 

(5.19) 

From (5.16) the far field is 

ike*-,    oo 
sf,    v      e  

u   (Pl) = — 
( + 1,) 

n-M   M       t 
W^n V,  .,n-l  UV        V V1.  ,J,,„M,l 
Z_! <-lk°) Z^ (-l)     -ÜTW l->^{-l)i-Dot 
n=0 M=0 l ''     t=0    i=0 0'1 

(0) 
"1      n=0 

Pt(Ti1)cosf01 (5.20) 
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The scattering cross section is given by (ü.7) with 

n      _    .n-M    M      t 

->,'=(-D-
1
 E^br EE<-»'^ 0^/(0)^(^)00.^, 

M=0     u       '       t=0 t=0 0,1 v    1 l 

(5.21) 

Normal Incidence: 

When 0   = 0 , we can write, as we did Li section 5.1, 

u (p,) - o      ' >    <-*o)n ,>   (-.,» -j-L— >>    0^(0^(15,)^^) 
r=0  t^a 

.M 

(5.22) 

where, for the Dirichle» problem, the coefficients D    (0) are related through 
r, t 

equations (5.10a, b, c)? with 

At
M(0) = 

r -F(ti)M 2t+i 

^K¥)<^l)^ ,   M+t even 

^ 
M+t   odd 

(5.23) 

.M For the Neumann problem the coefficients D   JO) in (5.23) are related through 
r, t * 

(5.12a,b,c), with 

M-l.. 2t+l 

A«(0) = 

.^(tl)M-JM 

\ ^w^w^- ,  M + t even 

0 ,      M + t  odd . 
V. (5.24) 

42 



THE    UNIVERSITY    OF     MICHIGAN 
7133-5-T 

Equations (5.23) and (5.24) were derived from (5.17) and (5.18), (5.19). respectively, 

by letting 6=0    and / = 0,   and they are in agreement with the corresponding 

equations (5.11) and (5.13) for the oblate spheroid. 

For both the Dirichlet and Neumann problems the far field is given by 

sf e 
u   (P,) = - 

ike?     CD 
UnJ 

n-M    M 

'1      a-0 
2.<-^n^<-»-1

1^rZ_.<t<o,w, 
a-u M=0 t=0 

(5.25) 

while the scattering cross section is given by (5.7) with 

.n-M    M 
i-i y^V 

u   (p.) = (-i)        / ,,     ,,v 
n    l to    (n-M)- 

DM'0)P(n1) o, t      t   i 
(5.26) 

In Appendix I, we give the first six terms of the far field expansion for both 

the Dirichlet and Neumann problems. 
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VI 
NUMERICAL CALCULATIONS 

As a demonstration of their usefulness, the theoretical results have been 

employed to calculate the scattering cross section of some representative prolate 

spheroids for both Dirichlet and Neumann boundary conditions.   The prolate spher- 

oids considered had major to minor axis ratios of 10:1, 5:1, and 2:1.   Back scat- 

tered and forward scattered cross sections were determined as functions of wave- 

length, and complete polar diagrams of bistatic cross section were obtained for a 

few special values of kc.   All calculations were carried out for a plane wave incident 

along the axis of symmetry of the spheroid. 

The expressions employed for this calculation, which we repeat here for con- 

venience, were equation (3.32) 

OP Zn 

o  = 4rc2 Y] (kc)2n >     (-l)n+muf     (rOu8^) (6.1) /—TH £—^ 2n-m   1   m   1 n=0 m=0 

and equation (3.38) 

m       1 ,_  _    .m-j 
sf VX^W i 

u (nJ = /_, > ,    ,     .„ - D1 .(? )P.(n1) m   1       4^4^     (m-j)'. o, i   s    i   1 
j-J    i u 

(6.2) 

where Ir   . in (6.2) is given by (3.35) for the Dirichlet problem and (4.25) for the 

Neumann problem. 

The series in (6.1) was terminated at n = 10 for the 2:1 and 5:1 spheroids 

and at n = 9 for the 10:1 spheroid.   Thus the cross section values included terms 
20 18 

up to and including (kc)     and (kc)     respectively.   The back and forward scattering 

results were also obtained for smaller values of n so as to reveal the manner in 

which the inclusion of higher order terras improves the Rayleigh approximation. 
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Figures 6-1 and 6-2 present the back scattering (17. =1) cross sections of soft 

and hard spheroids respectively.   The cross section values are normalized with re- 

spect to thz geometric optics value 

ffb 
g-o. 

= jrc 

2       2 

(6.3) 

The number associated with each curve indicates the value of n at which equation 

(6.1) was terminated.   The Rayleigh curve (the curve obtained by terminating (6.1) 

at the first nonvanishing power of kc) is denoted by n = 0 for the soft spheroid and 

by n = 2 for the hard spheroid.   The exact result shown in Figures 6-1 and 6-2 was 

computed from the prolate spheroidal function series (Senior, 1966).   Also included 

in each figure is the maximum value of ka ( = kcC ) for which the series in (6.1) con- 

verges, i.e. the radius of convergence, as estimated by Darling and Senior (1965). 

The present low frequency calculations have no precedent except in the case of the 

10:1 hard spheroid where similar calculations (though not as extensive) were re- 

ported by Sleator (1964). 

Figures 6-3 and 6-4 present the forward scattering (n  =-1) cross sections ol 

the same spheroids.   The cross section values are normalized with respect to the 

limiting form of the bistatic geometric optics value 

2 2(.2 
a = 7ra   = TTC t 
g.o. s 

(6.4) 

As before, the number associated with each curve designates the value of n at which 

the series in equation (6.1) was terminated.   No exact results were available for 

comparison in this case. 

Figures 6-5 through 6-9 present polar diagrams of the bistatic cross sections 

of the same spheroids.   Since the polar diagram is symmetric for nose-on incidence. 
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which Is the only case considered, each figure includes data for both hard and soft 

spheroids.   The back and forward scattered cross sections lie on the h^avy vertical 

line bisecting the figure with the back scattering (9  = 0) value on the upper part and 

the forward scattering (Ö  = ir) value on the lower.   The values of the cross section 

are normalized with respect to the geometric optics cross section, viz., 

2 4 2 
a - 4jrb a go. [a^H-y+bVrij!] 

= 4a,c 
2  tK-»2 

(6.5) 

with r)  = cosö   . 

As noted previously, the values presented for the 2:1 and 5:1 spheroids were ob- 

tained after terminating the series in (6.1) at n ^ 10 while for the 10:1 spheroid the 

series was terminated at n = 9. 

Similar calculations have been carried out by Spence and Granger (1951) for 

hard spheroids though the values of ?   and kc were different from those employed 

here.   In the few cases where comparison was possible (kc = 1,  a/b = 5,10), good 

agreement was obtained. 
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FIG. 6-la: BACK SCATTERING CROSS SECTION OF SOFT, 2:1 
PROLATE SPHEROID FOR NOSE-ON INCIDENCE. 
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FIG. 6-lb: BACK SCATTERING CROSS SECTION OF SOFT, 5:1 
PROLATE SPHEROID FOR NOSE-ON INCIDENCE. 
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FIG. 6-lc: BACK SCATTERING CROSS SECTION OF SOFT,  10:1 
PROLATE SPHEROID FOR NOSE-ON INCIDENCE. 
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FIG. 6-2a: BACK SCATTERING CROSS SECTION OF HARD, 2:1 
PROLATE SPHEROID FOR NOSE-ON INCIDENCE. 

50 



THE     UNIVERSITY     OF     MICHIGAN 
7133-5-T 

V 

1 

Trb /a 

,01 

.005   - 

.003 

8     10 

0 .2        .4        .6       .8       1.0      1.2      1.4      1.6      1.8     2.0 
ka 

FIG. 6-2b: BACK SCATTERING CROSS SECTION OF HARD, 5:1 
PROLATE SPHEROID FOR NOSE-ON INCIDENCE. 
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FIG. 6-2c: BACK SCATTERING CROSS SECTION OF HARD,  10:1 
PROLATE SPHEROID FOR NOSE-ON INCIDENCE. 
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FIG. 6-3a:  FORWARD SCATTERJNG CROSS SECTION OF SOFT, 2:1 
PROLATE SPHEROID FOR NOSE-ON INCIDENCE. 
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FIG. 6-3b: FORWARD SCATTERING CROSS SECTION OF SOFT, 5:1 
PROLATE SPHEROID FOR NOSE-ON INCIDENCE. 

54 



THE    UNIVERSITY    OF     MICHIGAN 
7133-5-T 

jra 

maxka = 1.74 
?   =1.0050378 

8 

J I I I 

0 .2 .6        .8        1.0      1.2      1.4      1.6    1.8 
ka 

FIG. 6-3c: FORWARD SCATTERING (MOSS SECTION OF SOFT, 10:1 
PROLATE SPHEROID FOR ilOSE-ON INCIDENCE. 
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FIG. 6.4a: FORWARD SCATTERING CROSS SECTION OF HARD, 2:1 
PROLATE SPHEROID FOR NOSE-ON INCIDENCE. 
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FIG. 6-4c:  FORWARD SCATTERING CROSS SECTION OF HARD,  10:1 
PROLATE SPHEROID FOR NOSE-ON INCIDENCE. 
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FIG. 6-5:  BISTATIC CROSS SECTION OF 2:1   PROLATE SPHEROID 
FOR NOSE-ON INCIDENCE. 
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FIG. (i-6:  BISTATIC CROSS SECTION OF 5:1  PROLATE SPHEROID FOR 
NOSE-ON INCIDENCE. 
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FIG. 6-7: BISTATIC CROSS SECTION OF 5:1  PROLATE SPHEROID 
FOR NOSE-ON INCIDENCE. 
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FIG. 6-8: BISTATIC CROSS SECTION OF 10:1  PROLATE SPHERODJ 
FOR NOSE-ON INCIDENCE. 
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FIG. 6-9: BISTATIC CROSS SECTION OF 10:1  PROLATE SPHEROID 
FOR NOSE-ON INCIDENCE. 
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APPENDIX A + 

THE REGULARITY OF THE FUNCTION dp) = e"       ?"n uS(p.) 

In this appendix we offer a proof that the function Up) in (2.14) is regular 

at infinity in the sense of Kellogg, that is 

lini    j ru(p) j < QO and 
oo 

lim 
r—*OD 

2 dUp)\ ^.       o^e^TT 
r      - v 

dr 
co , 

0$P$2T! 

(A.I) 
The proof is based oil an expansion theorem (Wilcox,  1956) which guarantees ihat 

ihe field scai.ered by the prolate spheroid may be writien in the form 

ikr^—^ f (0,0) 
u (p) = /  

r   ^—^       n 
n^O      r 

r > a (A.2) 

where the series is uniformly and absolutely convergent for all r, 0, 0 provided 

r > a,   a being the radius of the smallest sphere completely enclosing the prolate 

spheroid. 
s 

From (A. 2) it is clear that u"(p) satisfies the first of conditions (A. 1) but 

not the second and, consequently,is not regular at infinity.   The function u{p), how- 

ever, which by (2.14) and (A.2) may be written 

CD 

uXp) = e 
-ik(c<; - rtcr;) 1 M0. 0) 

(A.3) 
n=0       r 

can be shown to satisfy the Kellogg conditions.   The proof is as follows: 

The variables ? and rj are related co the spheroidal coordinates by the 

equations    - _ _L 
? ~   2c 'I T" 2 r2 2 r +2crcos9 + c    +   Jr  -2crcos0 + c 

i rn*    "     2    n? 
rj = —   Isjr +2crcos0 + c    -   yr  -2crcos0 

2c   L) 
+ c 

The factor d^tr;) appearing in the exponential of (A. 3) can now be written 
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c^tn) =   Vr -2crcos0 + c    = r ^lt2cose(c/r)+(c/r)2    .      (A.4) 

and, if r is large, 

cKCtrj) = rtccos0 + 0(1/r),      r-»>oo . (A.5) 

We can then write for the first Kellogg condition 

lim    |nj(p)|=      lim 
r—»oo 

oo 

r—^oo 

+. ike cos Ö 

+ ickcos9 + ü(l/r)\_1   n   ' 
^ /I—J       n 

fn(0.0) 

a=0       r 

=  e f <co (A. 6) 

To show that the second condition is satisfied we need the derivative of uXp) 

with respect to r 

oo 
1 +f»nsfl<r»/rl CMJD)       -ikfe + n)-rl   L ltcosö(c/r) 

/lt2cos0(c/r) + (c/r)2- 

f (0.0) 
^—^    n+l n=0   r 

CO 

n=0 

:n+l)fn(0,0)' 

n+2 (A. 7) 

For r large 

i      ■■ =w = 1+cosOCc/^ + CKl/r") ,      r->Qo 
>/l + 2cos0(c/r)+(c/r) 

so that for the bracketed expression in (A. 7) we can write 

!_ Itcos0(c/r) =i-[i + cos0(c/r)iri + cos0(c/r) + O(l/r2)1 
]]lt2cos6(c/r) + {c/r) 

(A. 8) 

- (Xl/r ) (A. 9) 
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Employing (A. 5) and (A. 9) in (A. 7) we have that 

lim 
r—»00 

2cMj2)| 
dr 

lim 
r->oo 

! ,-       oo 
^ikccose + OU/r) 

^CKD 
f (0,^) n 

n=0    r 
n+1 

oo i (e, 0)" 
n + ikcos0 , 

e i <co.      (A. 10) 

which shows that the second Kellogg condition holds also. 
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APPENDIX B 
THE SERFAGE INTEGRAL FOR THE DIRICHLET PROBLEM 

In this appendix we evaluate the surface integral of {0.4).   Repeating the ex- 

pression, 

.   r1 r- 
Ap.) = -c(^-l)\     dn\    d0u(p )-~GD{p1,p ) . (B.l) 

1 s \ \ s dt      o     1     s 
J-i      Jo 

From equations (3.2) and (3.3), 

-ikci^  tq)   -ikc(cosO f n+sinö l/?   -1   Jl-r\   coslt) 
uXp ) = -e e (B.2) 

and from (2.21), with ?   <c  , 
s       1 

00      n 

rf-GD(Pl,P) = ---i-^]27(-l)mc   (2n+l) dt      o    1     s 47r c *—T> *-—- m 
s n=0 m=0 

(n-m) 
(n+m): 

.-12 

cos ni'0- 0 ) 

P^nJP1^,) n     1    n 

Pni(f ) p"\n.Qn^)_^L_s.Qm(n,   m 
n    s     n     1     n

m/e \    n    s     n     1 
n    s 

00       n 

47rc(fJ-l) n-0   m-0 
s 

e   (2n+l)in" "^ cosUf-t,) 
J  m (n + m). r   rl 

Pm(n1)P
m(n)-JL-L 

n     1    n        Qm(? j    , 
n    s 

(B.3) 

where, above, we used the Wronskian relation 

wfcAa Pm(^ = Pm(?)'Qm(F)-Qm(.-)'Pm(?) =  ^   (f^     . (B.4) 
Ln n_|n n n n .2,    (n-m)'. 

?   -1 
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Substituting (B.2) and (B. 3) in the integral (B. 1). we have 

-ike?      oo      n rJ^ts 

1 4jr      C—HL—J   m (n + m)'.     n    1   ^m,. . 
n=0 m=0 Q   (? ) 

n    s 

f+l   -ike(? cos9  ±l)n P^     -ikcsin9   k2-I [l-t]2 cosp 
A  dne S        (ö        P^(n)\   d^e 0     S cosm(0-01). 

(B.5) 

The functions involved in the integrands are continuous in the intervals of integration 

and the only assumption we made in interchanging integration and summation is the 

uniformity of convergence of the series (cf. VVhittaker and Watson,  1952, p. 78). 

We now use the expansion (Magnus and Obcrhettinger, 1949, p. 155) 

oo 
ikpcosii       >     .m       T   (1   . . .„ , 

e r =  /     i   c    J   (kp)cosm0 . (B.6/ 
m-u 

Utilizing (B.6) in (B.5), with kp =-kcsin0   J? - 1 h-n    ,   results in 
o ' s      ' 

-ike?     oo     oo      n nm^ \ 
,8-    .        e !^7^,S^^^      /  -^    /o   , ,, (n-m)'. ^m,    . Qn gl 
I (?,)=-—TZ—/   ,/   . /   ,e   (-i) € (2n+l) P   (n)  1 -*       iT^rffJ  m i (n+m)'.    n    1   .m.. . i=0   n-0   m-0 Q   (? ) 

n     s 

>+1     -ikd^cos^+Dn m rT-   . -.C271 

drie J P^ (ri)Jf(kcsin0   V^s"1  r^Jl    d^c08"1^-01)cosi0 

■1 Jo 
(B.7) 

The integration with respect to 0 can be simply performed, while to integrate with 

respect to r) we use the relation (Morse and Feshbach,  1953, p. 1325), 
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.% 

d/ie 
iz cos j/cos^   m n-m|2^     in. 

P   (cos/i).J   U.sini.'sin/i)sm/u = i       j—   P   (cosi/)J    ..(z) 
n m V z      n n+y. 

10 
(B.8) 

In this expression we let 

n - cos^ 

/.cos 1/=-kc{f   cosO  t\) 
s o 

12 
/. sini' - kc sinO   \ c.   - 1 

o V   s 

so that 

z2 -   kc(^   - cosO n   ; 
L     s oj 

cos V = 
?   cos0   -1 

s o 
i   t cos 9 
s o 

We can then write 

+1 
-ikc(?   cosO  ±\)n r r-5  

dne ^ 0 P^^J   (kcsinö    kC-\){\-rf) 
n        m v, o V    s 

-1 

n-m 
27r 

£   cosO  tlN 
pmf- ! ,    0„    ]J 

kc{?  tcosö )    nV     ?  ±cos9    )  n+V, L 
kc(f  Icosö ) 

's o j 
(B.9) 

Performing the 0 integration in (B.7) and using (B.9), we obtain 

-ike?      oo      n 
(n-m):     m     , Qn ^^ 

/    c   (-i)  (2n+l)f-~^ P' (n) cos ml 
^^—TT

1
  m (n + m)I    n   '1   ^m,, , r\ n-0   m-0 Qm(n n    s 

COS0   tl> 
Pm      ! ^    °        )J 

n V   ?  tcosö   j   n+y. 
kc(?  tcosö ) 

s o. 
277 

kc(FTcos9)    ' 
s o 

(B.10) 
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where, above, we used the relation (Magnus and Oberhettinger, 1949, p. £3) 

nm/     \      /   i »fi+m -HI, i ^    ^ 1 P   (-x)=(-l)        P   (x; .      -l^x^l. 
n n 

(B.ll) 

We now expand the Bessel function in (B. 10) according to (Magnus and Ober- 

hettinger,  1949, p. IG), 

jargzj <n (B.12) J   (z) = (z/2) 
m 

m (12/2) 

£=0 
Jiinm + f+l)    ' 

to get 

s,   . s ji N 
Qo    oo      n 

I (p,) = -e AZ. /  i\n/o   . ,> (n-m): 
2 4-—ttl—i -i-—-i   m (n + m): 

f^O  n=0  m^O 

■ikc(F tcosO n 
s o 

n+2i 

/? cos 9 tr 
,m/   s        o 1 

Pm(n,)   n 

2 n    s 

cos m0 

-ikcf 
= -e 

oo   |n/2"]   n-2f 
s fZ N        >^   \ fo/      o«\   n (n-2f-m)! 

2   L,l^  l^ e
mL2(n-2i)+1J (n-2i+m)'. 

ikc(f   -cos5 ) 
s o 

n = 0 
n 

m^ 

.m    /    s 
f cos0  ll\ 

2   1 
n-2iV   ? +cosÖ   7 ,,_,     .^ 3V V    s-        0/ i'.r(n-i + -) 

^/"l'    m    .. . cosm''l 
V^^s' 

This last expression may be written as follows; 
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-ike? 
Apj) - -e S 

oo M       i 

.     ,    ,,-ikc)    (?  Icose )     /   . /     e   v2f+1)77T—JT 
M=0 i=0   m=0 

/? cos0  tl 
Pml    s        0 

" p^ tn,)—z  cosmpj    , 
2M(^!r^+|) * '■ Qr(5s) 

(B.13) 

where in the above series in k the only nonzero contributions to the coefficients are 

made by terms for which M + i  is an even integer. 

We have then written the surface integral (B. 1) as a power series in kc of 

the form 

-ike?    ^——' 
Kp^e S   /   .(-ikcrijV) (B.14) 

M-0 

where I^^P,) is given by 

M       i 

i=0    'n=0 

with 

(B.15) 

(?  +cos0 )M ,.      . 
.e   ^     B    ^0      (2i+1)(J-m) 

'? cose tr 
^m/    s        o 
i   \    ?   +COS0 

S o 
m' 

^T^ 
,M+1 {St ^'■(myr(m^y 

M + i  even 

M + i  odd 

(B.16) 
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APPENDIX C -oo 

EVALUATK»N OF THE INTEGRAL   \     Cf(?,?    ? )Qf(?)d? 

>?, ■>oo 

dSC^.^.yQ^)^  \     d?Q^1)Pt
f(?)Qi

r(?)+  \    dCP^^Q^^Q^?) 

I    S     1         i,.  . _i 
.f 

Q.<Uj5 

df Q,(5,)Q,(I)Q (5) . (0.1) I t   i    t       r 
n    s 

From Legendre's associated equation we have that 

_d. 
d? 

"        2  dQ (?)" 
+ Hr+-)- 

£2   l.i 

l-^J    r 
Q (?) = 0 

_d 
d? 

9 dc/a-r 
+ ut+D 

l-r2j 
Qt(?) =0 

Multiplying the first of these equations by Q (?) and the second by Q (?) and sub- 

tracting the second from the first we obtain the following; 

«K "        2   dQr(01 (        d 
d?    J      ^r      d? 

9  dQ (?)" 

(i-? )-4- d? 

+ [r(r+I)-t(t + l)]Qr(?)Qt(?) = 0 

Integrating this expression we have that 
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'S,,«» 
if -1 

d?Q {?)Q (0 - V"V'"      r{r+l)-t(t+l) 

\-h 
dC i... cl   T     ,2.dQr(?)-1 v^ L( d-D d? 

r     d? [_ d^ 

■1 

r{r+l)-t{t + l) 

1 

" i 2  dQr(?) 

Qt(?)(i-r)-^- t d? 

rQ.(?) 

^ ?,.<» 
1        i 2  dQt(?) 

'/^   ?,.<»-, 

?s-lJ 

r<r+l)-t(t + l) 7TT L(] 2r+l   Cr-i+1)Vl(?,-{r+1)(r+i ^r-l^5] 

r 
2t+l (t-i + l)Q[+1(?)-(t+l)(t + i)Qj_1(?)] 

-.fj.OO 

JVl 
;   r^t^O.    (C.2) 

Similarly, 

'I 

dgP^)Q^)= ^Af-'utVi) 
-        dQ(?) dP.(C) ^rv-,? 

-I?. 

1 
r(r+l)-t(t+l) 

Q (?) r 

-P (?) 

2r ̂  [^r-i + l)Qi
rfl(?)-(r+l)(r + i)Qi

r_1(?i] 

2t ̂
- jjt-i + DP^^-a+iKt+i)?^^) ;   r^t^O . (C.3) 

Substituting (C.2) and (C. 3) in (C. 1), we obtain 
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>oo 
<<!,) «cy^fX^ri^,.,,..,, 

s 

I       dPtlVl    -2       fl 

,5ri'Lp
l
<5i)-«r 

'(fl
<iP'<5'>,Ti dQ (5 ) 

s      d? 
s 

P.'5!' 
r(r+l)-t(t+l) 

r(r~ 

dQ^?,)" 9       r#       ^r^i'      /       dQt^in 

+i)-t(t+i) ^^ , r^s-1' 
Qt(?s)   L- 

H^s'     d? r   s      d? 
8     J_ 

v'j   r 2   i  ^t^^  2   i  ^z 

K^   r2   i  ^t^^ Qt^i) 
r{r+l)-t(H 1)   PM V^l'    d? 1 r{r+l)-t(t+l) 

2        Pt(?S
)    i        ^t^^ 

8       Q (V    r   S      d?s 

1      r J    ]QAU-~-PM,) r(r+l)-t(t+l) 

.2   ...i 

ltxM'     d? 
1 

t^l     dC 
1     J 

Hr+D-Ut+l)      /,„ v   Ptv?s' 

dP!(?s)      i       ^V 

r   1 
r(r+l)-t(t+l)   (t-i) 

Qt(Cs)   L 

(t + i)'       i 

dC. 

^^l) 

t 0s     d? 

f. 
Qr(gs)    (t+<)'.       i 

i<r+l)-t(t+l)    J/w v    (t-i): ^   ' 
V^ 

(cont'd) 
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(-1)     (t + i)'. 
r{r+l)-t(t + l)    (t-i)I LQJ(C8) 

t 1    r ^ 
Also, 

vOO 

since C   = 0 for i > t 

cJ(?.?1.?s)Q^)d? = 0       for       i>t 

(C.4) 

(C.5) 

- 
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APPENDIX D 
DERIVATION OF RELATION (3.21) 

In this appendix we give a proof of the statement of equation (3.21), that is 

(D. 1) D^AnMtirWn.    l.r.t*M r, t    s t, r    s >   •   •* 

The choice of sign is determined by the sign chosen in (2.18). 

The proof follows an inductive argument.   First we show that (D. 1) is true 

for M = 0 and then that if it is true for any M it is true for M+1. 

Since r = t = 0 when M = 0,  equation (D. 1) is certainly true for M = 0. 

Assume next that it is true for M.   We can then integrate (3.19) and, following the 

same procedure as we did there, end up with the recurrence relations (3.26a,b, c). 

We are interested mainly in (3.26a) since for r = t equation (D. 1) is obviously true. 

Repeating here (3.26a) and subsequently employing d in (D. 1) which is assumed to 

hold for M, we obtain 

r,t     VV      iir+l)-t(t+l) 
rjlzll nM.i ,. . _ t(t-i)   M.i 
2r-l  Dr-l,t(V+   2t-l Dr,t-1(^) 

+ (t-UKt-H-HlM.i ,. ,   (r-HKr+i + D^M.i ._ . 
0. . 0 D    ..Ac,  I-        ~—~ D  ,.   If ) 2t+3 r, t+1   s 2r + 3 r+l,t   s^ 

r(r>i)   -H   rH-1   M.i 
2r-l  (-1) Dt,r-1(M) r(r + l)-t(t+l) 

_ t(t-i) +   m-iM.i        + (t+DU-ff-n)^   rH-t+i   MJ {e . 
^t-l1-1' Dt-l,rl?s,- 2t+3 (-l) Vl.r'S' 

2r + 3 t. r+1   s 

(cont'd) 
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= ( + 1)rH 2  [Vi)DM.i       >    iirzi)   M.i 
l-U       Kt+D-Hr+l) L2t-1 Ut-l.r^s;+   2r-liJt.r-r8; 

+ (r-HHr-t-i+ 1)    M.i . (t-HHH-i-H)    M.i       71 
2r + 3 Ut.H-r8;*        2t + 3 Hl.rVJ 

t   rHDM+l.i 
t. r        s (D.2) 

So (D. 1) is true for M+1   if it is true for M.   Since it is true for M = 0,  it is true 

for all M (M = 0f 1,2,...). 

« 

-t   % 
\ 
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APPENDLX E 
DERIVATION OF EQUATIONS {3.24a, b) 

In order to arrive at equations (3.24a, b), we start with (3.22) and (3.23) 

which we repeat here 

M-H   M+l ,     t 

hl+W = "2 ^ A^   V^rir+D-tU+l) 
Hr^l)   M,l ( 

2r-l    r-l^^s' 

t(t-/)    M,i +(t+l)(t + i-H)    M,i ,_ . 
+   2t-l    r,t-rV-       2t+3 r.t+l^s' 

(r+l)(r + i-H)    M, i 
2r + 3 UiH-l,t^s; 

M+l   M+l       t 

-T-^Q/V-QX) P^n^cosi^ , 

(E.l) 

IM+l(pi) =^ ^   Z]E^1'i(?s)Qr(?l)P!(r1l)c0S^l •     (E-2) 
t=0    r=0      1=0      ' s    r   i    i    i i 

When r^t,  a comparison of these two equations gives {3.24a).   Whenr = t,  we re- 

write the above equations as follows. 

Equation (E.l): 

M+l    M+l .    t 

Wl^l*     2 4-^   4^  4-7^ r(r+l)-t(t + t^O     r=0    i=0 1) 

Hr^)    M,i 
2r-l     r-l.t^s' 

- t(t-0    M.i ..(t + lHt+i + l)    M,i 
+   2t-l  ^.t-l^s^ 2t + 3 Dr.t+l(S) 

(r+l)(r + ^ + l)    MJ  ._ v 

2r + 3 Dr+l,t(?s) Qir(?l)Pt(rll)cOSi,Äl 

M+l    M+l .     t 

^TT !  
4^ 4rnJ  W'Hr+D-Ut+I) 

Wr-i)    M i n--   ^ D   '     (€ ) 
2r-l      r-l,tV?s' 

(cont'd) 
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. t(t-i)-M.i ,. .+ (t-HHH-i-H)^M.i  ,_ , 

(r+l)( l)(r+i + l)^M.i ._ 71 Qr gs) ntl& .„i,    .       ,d 
^3—D*i.iVJ -iTTVVVV008^! (E.3) 

W 
Equation (E.2): 

M+l     t 

i+M)=E E C'i(cs^^i,pt(T'i>co8^i (E.4) 

A comparison of (E.3) and (E.4) gives 

M+l 
M+1'i/|. Y-'V' -2 frir-i)^^ ._ ., t<t-i)nM./ ,. . 
1.1     (Cs) " Z-.  r<r+l)-t(t+l) ll^ Dr-1.t(€8) + ITT Dr.t-l(?s) 

r=0 

+ (t-H)(t+i + l)    M.i  (    .    {T+l){T+t + l)   MJ .    . 
2t+3 r,t+l^s'"        2r+3 rfl.t^s' 

Using (3.24a), the above expression can be written 

(E.5) 

M+l .     i 

CM<V-SXTEMM<V. r=0    Qt(l8) 

which is equation (3.24b). 
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APPENDIX F 
THE SURFACE INTEGRAL FOR THE NEUMANN PROBLEM 

The integral to be evaluated in this appendix is that of equation (4.6) 

+1   n2ii 

np,) = -c<r-i)e     s 
] s 

dn\   d0e+ikcnGV,p ) S 

\ o   1    s 9?. 
(F.l) 

-1    Jo 

By equation (3.3) 

3u (p ) 
s 

= -ike 
s \/w 2 -, 

cosö n+sinö     7"o ""    cos0 o r^zx 
s 

u^p ) 
s 

r 
= -ike /cos9 n + sinö 

L    0 0 [?-\ 
tyi-n2      ~1   -ikcIcos9 ? n + sin0 \/f2-l\/l-n2 cos0 
s'        J. Los o»'s     » U 

COS0 

Substituting the above expression together with the appropriate part (? <?1) of 

(2.22) in (F.l) we have 

..oo       n 

IV) = _^(^1)e"1GsXV(..i)me   (2n+l) 
n^O   m=0 

(n-m) 
-i 2 

(n + m): 
-Hi,    i^m,. . 

Pn^l^n^l) 

Pm(? )' 
pm(n--EL-^Qm(?) 
_n    S     Qm(?)'     n    S- 

>+l 
-ikef? cos0 ±{\ri 

m. . L s        o    J 
driP   (n)e 

n 
n    s 1 

cos0 r) + sm0     , =     —cos 0 
o 

d0 

)0 

I -ike sin 9  W?  -1 i/l-r|   cos^ 

X cosm(0-^1) . (F.2) 
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Using (B.4) for the Wronskian and the expansion (B.6) with 
fÜ—  I 2 

kp = -kc sin9  yf  - 1 y 1 - n" , we can write for equation (F. 2) 
o» s 

.   _ CD     oo      n 

1     47r Wfer'^ü'      l m        (Q+m):   n ^ Qm(c )• 
(n-m)'. „m,    v 

Qn ^l* 

n    s 

^+1 

cosm1 QA  dn P™(n)j/kc sin 0o/f i /i - n2^« 
-ick(? cos0 tl)n 

s        o 

\27r    / r    /I      2 
d0 cosö n + sin0   —i-*— cos 0 ) cos i 0 cos m0 . 

To perform the integration with respect to 0 we employ the identify 

i0cosi0= - cos(i+l)0+cos<i-l)0J cos 

(F.3) 

• 

the result being 

ike? Qm(U 
oo      n 

s s,    .       ike \      \ -  .xm,_   . ■. (n-m)'.  ..m,    .    «    i rf e I (p ) = -r- /      /    e   (-i)   (2n+l)7—-—r- P   irj.)  cosm0, 
1 2   <-—T^ ^—^ m (n+m)'.     n    1     ra * ' 

n=0   m^O Wsy 

>+l 
-ikc(? cos9 +l)n S r-z—   . ? 

dn e        ö       0       n P™<n)Jm( kc sin 0o ^5^ - l ^l - n' 

.    .   .      oo_    n 
.,    ? sinf 
ike   s       o 

Jr-l    n=0  m=0 
Y s 

,m+l (n-m)'. „m,    , VV 
(-i)       (2n+l)  "       ; P  (nJ 

(n+m)'.    n    1 «X'' 
cos m0 

>+l 
ikc(? cos 9 tl)r) 

drje s        o f^C^^i^8111«»^ ^) 
(cont'd) 
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.,     ? slnö   ^ ^            ,              ,        v                 Q
m(c ) 

+ ^      / g /   ,/   .(-»)       (2D-H)-   ^   >,   P   (nJ cosm0 2 /?M vf^f (n+m)i n lQys)'     l 

-ikc(C cos0 iDrj / ^ ^ r5—   , -x 

dne        s      0       /l-n P>)Jm.1(kc8ineo/e
2-i/i-.n2;. 

(F.4) 

To perform the integration with respect to rj we employ the following recurrence 

relations (Magnus and Oberhettinger, 1949, p. 62) 

(2n+l)nP^(n) =(n-m + l)P^1(n) + (n+m)P^_1(n). m^n.   n = 0>l>... (F.5) 

(2n+l)/lVp^r,> = P^1(r,)-P^+
1
1(r,),      m$n.   n = 0.1,2....       (F.6) 

(2n+l) Jl - n2 P^n) =(n-m+lHn-m + 2)PI°"1(n)-(n-m-l)(n + m)Pm~1(r)). ' n n+i n-1 

m<n,  n = 0,1, ... (F.7) 

Substitution of these expressions in {F.4) and a simple rearrangement of the terms 

leads to 

a      8lV)= f cos*  TTt   (-!)■"     ^fp^J.l-^V 
1 2 o t-^ t—rt m (n + m)'.     n-1    1 

, (n-m-H):    m   .    . gn+l^lj    v A 

(n+m):      n+1   1   _m  ,, w ^1 

n-1   s 

.ni 

'+1 
ikc(? cosO   >l)r] x p-—    , ; 

dn e '■'        0 P|m(n)J_ (kc sinej ^ - 1 Jl-r,' 
n       m 

■1 

(cont'd) 
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_    .   „       oo     p.-l 
..     ? sin?    v;—i^r—i 
ike    s        o   \     \    .  ..m+1 

(-1) 
f?--l    «=1   m^f 

— m  ,_ . 
(n-m+1)'. „m .    , Qn+1 V 

In   I ———— 
ni  . _ . (n + m+Dl Pn+l(,1l) 

(n-m-1)'.    m       v^SliÜi! 
(n+m-l):    n-1^1  ^^.j 

•Jm+l(
kCSin9o^  /^2) 

1 \ +1   -ikc(e cos 6 tl)n 
1  *  \   , so        _m+l cosing   \ dne 

-1 

Pn   (n) 

_    .   .      00    n+1 _. ^EI  .„ . 
Ike ?

S
Sm6o W1, .,m-l H-mtl)'.  Dm ,    JWfi! 

V   s n-1   s 

m  .    .. 
(n-m+l)'.     m Qn+1 gr 
(n+m-l)'.    n+l^r    m  ,_ ., 

Qn+l(§s,J 

^+1 

■cos mjS   \   drj e 
-ikc(? cos0 ±l)r) 

•C^m-l^o^R)- 

• * 

To perfo  n the integration with respect to n we employ (B.9) in Appendix B, the 

result being 

00      n 
ike? 

e I (n) =   ^COSÖ   Y y]e    (-1)°]^   J +1/(z)pn 

(n-m):    „m  ,    v'Vl sl    , (n-m+1)'. 

(ß) 

7— TT, P   /n,) +~;—;—77- P x1(ii,)    f cosmi), (n+m-l)'.    n-1    1    m  ,    >t       (n + m)l       n+1  '1     m -_ y   | rl 
n-1   s n+1  s 

00     n 
jikc    .   _ 
+ —- smö 

& 0 '?s-l   n=l m=Ö ̂ lTW<lw 

(cont'd) 
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(n-m-H)'. _m  .    . gg+l^lj     (n-m-1)'.  „m  .    . Vl^lj   i A 
(n+m+l)! WV^T—.-U+m-lV.  ^-iV^T—, f C0Sm,l,l 

oo    n+1 

^ O ?  -1  n=0 m=0 
s 

«-«-Jfv/^C1«» 

cy 
where 

z = kc(?  +cos9 ) 
s o 

^l^s>'-J 

(F.8) 

(F.9) 

ß = 
C   COS0   +1 s        o 

?   +ccs0 
s o 

(F.10)l 

Equation (F.8) is now put in the following form 

oo      n 
ikcC 

sTs.    .      ike        rt   i     >        ■> , 
e I (p ) = — cos0 -^  / /*   .e 

n=ö m = 

p_ ^n,) —z cos m0 

■'^/fVä/^'^w15^^ '2"'   1*1""    <n+m)l 

n '«„X'' 
oo      n 

Q-m(^) 

*:*/ 

X cos m0 

(cont'd) 
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r- oo     a-2 
ike s 

2 0^^ 

m       ^V 
■Pn(V^^,C0S^i 

LD=2   m: 
.if-1 E j       (^pm+l/ov (o-m)'. 

a    s 

CD      n 

.(-i^Jf J .m+l/0. (n-m); „m,    ^n^^ 
*w*iw^*:w cos m», 

as 

r— oo    n+2 
ike 

+TsiaSo.rs 
«s-1 Ln=i   m=] 

(-"^/f ^s.«^!!-^18^^ Vs^'-Vi^üT^ 

,.,,, - cosm0. 

n    s 

oo      n 

n    s 

Substitution of the relations (Magnus and Oberhettinger, 1949, p. 16) 

in (F, 11) and a regrouping of the terms leads to 

(F.U) 

(F.12) 

{F.13) 

35 
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ike? . 
s.&,    .        kc 

e I (p ) = - — cos 

00      n 

Cfl   f^JY^y-1     / ■vn2n+l  (n-m)'.   T       ,, 
0V z    \^—^/-—n   m 2z     (n+m)'.    n+V-) '        Ln=0  m-0 u 

(n+m)Pm
i(ß)-(n-m+l)P1"1(f3) 

n-1 ^ n+1 
P   (n,) ■—  cosm8 

n    1   Qm(? )' 1 

n    s 

oo      a 

•S Q^?,) 

m=0 
e   ( 

m 
-i)n(2n+l)ßPm(i3)J    ..(z)'!^, Pm(n )-S_i- cosm^ r   n K   0+72       (n+ m)'.    n   '1    m.    ., rl ^V 

-Tsin0 
0^ 

/U J T^ Y"( ,=i2s±ll ,      ,.i(a  m); 
W2   LWfe' 2z       "+1/2

(') <■>+">)•. 

C'^O» -.m,    .    n    1 J 
P   (n,) cosmß 

n  lQm(tr       l 
n    s 

ao      a 

^-_J /—-J (n + m)'.    n+V?       ' n        n    1 
n=l   m=l 

oo      n 
M    y^ \   ',  .,n{2n+l) T        , . 

cosm 
• i             - 

n=l   m^l 

(n- m)'.       m-1, . 
(n+m-2)'.    n-1 ^ 

(n-m + 2)'    m-1 
l/2

v"L  (n+m):      n+1^ 

m        Q   ^^ 
P \in,) ~Ji cosm0, 

"     1   Qm(C )' l 

n    s 

(F.14) 

This expression can bo simplified using the properties of the Legendre functions 

mentioned aho\ 

ative, we have 

mentioned above.   After simplifying and collecting terms in J  . wU) and its deriv- n+ h 
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ike? 
sTs 

e I 

r- oo      n 

(p ) =.f WiY Ye   {-i)n(2a+l){^l j       (Z). 1       2 U V^o ^o m (n+m):   ^^ 

^      tsH
2   - 

ßcosö +   > A   '''—sin0 o     L2   , o 
'V1 n        n    x  Qm( 

n    s 

kc    2* 
-oo      n 

Ln^J 

, ,  ..n   2n+l   (n-m)'.   T       . x /   .e   (-i)     —r—  7-7—r- J . i/(z) 
* «■—^ m 2z     (n+m):    n+y? m-c 

cos0 (n+m)Pm
1(ß) 

o n-1 ' 

cosd {n-m+l)PmM)-sine   -T=4=   pT^ Pm{ß) 
o n+1 o   /_2        »     K      n ^ t- 

« 

.m+l. 
+ sin0  -p==r ^P      {^)-(n+m){n-m + l)sin0  -p=s= ß P      (ß) 

0 r-2   ,       n     ^ o/_2,n /v1 /?s- 1 

^m,    .    n    1 J 
P   (r?,)-  cos mi), 

n    s 

(F.15) 

But by (F. 10) 

f 5Jl-(3 
ßCOSÖ   +      r-^—=- SinQ    =1 

s 

(F.16) 

Moreover, from the definition of ß and the recurrence relations (Magnus and Ober- 

hettinger, 1949, p. 62) 

Pm+1(ß) =       1 

"      ' /T? 
(n-m)ßPm(ß)-(n+m)Pm

i(ß) 
n r n-1 r (F.17) 
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Pm'\ß) = n 
1 

(n + m) ^7 ifo'W-KnW 
m, ^.   _m 

(F.18) 

we have that 

5^: 

cosö (a + m)P   .(^-cosö (n-m+DP    .(ß)-sin0     T.. P  (3) 
o n-l o n+1 o   rj2   ~       n 

+ Sin0  -i=S=ßPm+l(ß)~{n + m){a-m + l)smO  -p—^ßp111"1^) 

Z^'" *} ̂s"1 

+(? tcosö ) s 
-5     (n-m+l)P™ 0)q:f  Pm(3)-{n+m)Pm,^) (F.19) 

s-1 

Substituting (F. 16) and (F. 19) in (F. 15) we have 

ike? 

kc /i7 V1 V"1     -  .n 2a+i Ln^m):   T       ,_. ^^^^osö^ 
9  II .    /   ■/   .^   (-0   - 2z     (n+m)!  V1/^^ 2   , 

^ C  -1 

(n-m + DP1",^);? PmO)-(n+m)Pm
iU) 

n+1 s  n n~l 
..m,    .    n    1 J J  (nJ  cosmB, 
n    l  Qm(? )' * n    s 

(F.20) 
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According to equation (B. 12), 

oo 
2-i i    <,i    r >       (-i)V+° 

m   (-»'<2i+a4)z2'+n 

) 

Substituting these expressions in (F.20) and using the formula 

CD     n/2 00  . ^   ^ CO 

2n ZviEvvSE^ a z J n     ,   , 
n=C       y   \n=0 n=0   k=0 

bn-2kZ 

we obtain 

ike? oo   [n/2]   n-2i 

1 ^t^^W  fco   m 2n+1i'.r(n-i^) 
[2(n-2i) + l] 

,ni (n-2i-m):     m „. 
(n-2i+m)!   ^^^^n^^l) 

Ov 
<-^l/ 

cos m0 

oo   Ln/2j  n-2i 

2z^-öJWfcö'm 2n+1iir(n-l+|)   L -J(n-2i+m)l 

(tlH?  tcosÖ )  s o .m 
("-2'-m+1)p;:2m

('i) 

^sCatW-'"-2'^»1""«-!^' 
r)m    /     \     n-2f   1 cosm0 
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A simple inspection d this expression reveals that it is zero for n--0.   We 

can therefore write 

CO 
-ike?   v~ 

I (p,) = e /_ 
I 

where 

2 ^ Pr     „M+2 ^s o 

M=i 

M    _JL 
M-l \     \ 

>ikc) y^) (F.21) 

) = -T~h. (?_ + cose_) /   . /    e 
2i+l (i-m): 

T^T m^ 

r (t)(? tcose ) r 
S(2M+i)pJn{0) + ^ ^ 
L f3

2-i 

m 
-(i+m)?^^) P« (n) ~ cosm0,  ,      M + f even , (F,22a) 

Vpi) = 0'    M+i odd' (F.22b) 

where above we have substituted {F.9) for z and we have rearranged the series. 

Equation (F.22a) can be further simplified by taking into consideration (F. 10) for 

ß and the relation (F. 5).   In this way we can write 

where 

M       i 

y v= i=0   m=0 ̂Tv^iK^08**! {F.23) 
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M.mt .r-     s o /»n n ii-m)1.    1  

.  ■< 

^ cose +r 
MP 

,m/   s 1 
i \£  tcosö 

s o 
<-' 

/? cos0 tV 
bs      o      i V ? tcose 

? cos 9  llV' 
s        o (i+m)(?  tcosfl )p"Q

1 .   r   ,       (1 s o   1-1 V 5  IcosO 
o '—'_) 

M + i even   , (F.24) 

A^'m{? ) = 0 , M + i odd (F.25) 
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APPENDIX G 

THE INTEGRAL   \    d?K (?.?,.? )Q(?) 
JC *        l    8    r 

s 

According to the results of Appendix C, 

ooo       ^ p?i pa, 

--1 Qt(?1)\    d?Q(?)Q'm 

^t^/    ' J? '        r 

QJCC,) 

r<r+l)-t(t+l) (tj-l) p!<?i)<,5i,'-<(«1
)p[<5

1>] 

-^-i)[pJ(is)Q'r(y-Qf
r(5s)p;(y: >•   + 

PJ(V 
r(r+l)-t(t+l)   ^1 

(^-n 

^i^^i^-^^i^i)' rAc v.   r{r+l)-t(t+l)^s 

Q^^Q^^'-QV^Q^S)' 

(^-DQ^)  - 
r<r+l)-t(t+l) p!<5i,<<?,,'-<«i)p'«I)' 

«s-'><«!>   - 
r(r+l)-t(t + l) ^^s^t^s^K^s^^s)' 

n QJ?J r   s 

w 
(cont'd) 
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(V        (t+J):   i (-1/        (t-Ki); 
r(r+l)-t(t + l) (t-i): V?l'   Hr+D-Kt+i) (t-i)! 

Qt(?s)' 

= (-1) 
1 (t+i)'. 

r(r+l)-t(t+l) (t-i): L&V   t   1     r V i<t 
(G.l) 

Also 

»00 

K((?fC1.Cs)Q'(?)d? = 0 if       i >t (G.2) 

s 
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APPENDIX H 
REDEFINITION OF Q™ 

The original definition of Q   (/J) as given by (2.26) is 
n 

.m  „, . .,_,, .„,  . 2  . m/2 
0

m/ > _  tU     nn-Hn-H)r(l/2)  Qx -1)   ' A + m + 2   n + m-H        3    A 
ynW        n+1 nn+-) tt+m+1      2  ^    2      '       2      ;il+2;   2J' 

\n\>l.  |arg(/i-l)I<7r. 

(H.l) 

Hobson (1953, pp 233-234) has shown that if 

z=ß+Q-\   . (H.2) 

then the function 
1 

2      2m 

,^=ieH^2Fi(l+m'"+m+1;n+r-!2 
Z Z 

|z|>l.   |argfcz-l)l<7r (H.3) 

satisfies the associated Legendre equation.   Using this expression we can define a 

new function Q   (u) which holds for  |z| > 1 c r equivalently \ß\> 0, which is iden- 
n 

tical to Q {ß) giveajpy (H. 1) in their comr^oü domain of definition, \ß\>l. To do 

this it is sufficient to compare (H. 1) and (H. 3) for ^rge values of |JU| • The result- 

ing relation between the two functions is 

QmWM-l)m2mr(°+mt'>r"^)   uW (H.4) 
r(n+|) 

or 
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2     .2m 

-m, .     ; ,,mnm r(n+m+l)r(l/2)  (^i -1) ,, /l , ,        3    l\ 

nn+^) z 

|z|>l,   |arg(Ai-l)|<jr.        (H.5) 

Letting iu = i?,   ? >0f  we have z = iU+ ^ +1 j,   and 

(?2+1)m/2 
n111/^      (-2)     r(n+m-4)r(l/2) 

.n+l r(n+|)       (c+ /?^+m+1 

X ^(j+m.nMn+lin+l;- CTTvy' 

?>0     . (H.6) 

Using the relation (Magnus and Oberhettinger, 1949, p. 8) 

2F1(a,b;c;z) = (1 - z) ~ '  ^(c-a.c-b^z) 

we can write 

0+m.D+m+i;n+|;^ = (i_S) m
2Fi(;_m+1>i.m.n+|._i^ 

z 

(H.7) 

= i(?+\/? Letting z = i^+^ +i J and substituting in (H. 6) we obtain 

Qm(i?) =  (-2)m  r(n + m+l)r(l/2) (^l)m/2 

■n+1 r,   ±3\ ,2m 

2Fl(n-m+1'l"rn;n+2; 
1 

.-3m+l 

F^ny .   ?^0     (H.8) 
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which holds at ? = 0 also since  (n- m+l) + {--m)-(n + -) = -2m $ 0 for 

TT. = 0,1, 2, ...  (Magnus and Oberhettinger,  1949, p. 7). 

Equation (H.8) can be rewritten to read 

2       -9m 

n^icx (-1)        r(n-Hii+l)r(l/2)       (C +1) 
Q"(,C"i"+12m        r,„+|,      (5+ W?J- m+1 

2Filn-m+1'2-m;n+r-?^~7^7^) •   €>'0 

V 
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APPENDIX I 
THE FAR FIELD FOR THE DISC 

In this appendix we give the first six terms in the far field expansion for the 

disc for both Dirichlet and Neumann boundary conditions with the incident wave at 

normal incidence. 

The far field in both cases is given by (5.23).   This expansion involves the 
M 

coefficients A   (0) given by (5.23) and (5.24) which contain the Legendre functions 

of the second kind and their first derivatives with respect to i^    evaluated at C   = 0. 
s s 

Their values are determined as follows. 

From equation (5.5), 

Q. 
, ,.c, 1     r(n-H)r(l/2) 
n .n+1       _.      3. 

1 

r(n+i) c+^yi^i F>+l,|;n + |; 
1 

?^0 (i.i) 

Letting ? = 0,  we have 

rMn\~     l     r(n+l)r(l/2)     „.   x1    1      x3     n Qn(0) " ^Tl  Z~C~ 2Fl(n+1' i; a    2-l) ■ r(n+-) 
(1.2) 

Now, 

2Fl(n+1'i'n+l'-1) _ JZ. r H) 
Then (1.2) becomes 

vU+l r(J+1)r(| + 1 

W 

(1.3) 

Q (0) = 
n 

Trn'. 

(2i 
n+1 

f^"]2 
(1.4) 

* See, for example. Handbook of Mathematical Functlom , National Bureau of 
Standards, Applied Math. Seri     Tio. 55, p. 557 (June 19^4). 
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Or. we can write 

Q2n(0) - ~2^ 
n = 0,1, ... 

«2n+1
<0) = 

(20        n'.nl 

^r(2n + I),. 

(-4,-[r(n+|,]' 
.      n = 0,1.... 

(1.5) 

(1.6) 

Turning now to the derivative of Q ,   denote by Q'(0) the derivative of Q (i?) with 
n n n 

respect to i? evaluated at C =0.   From (1.1) 

i r\n+-) '- 

2( 
2n ̂T2Fl(Q + 2'2'n+l'-1)}   • (I-7) 

Employing (1.3), (1.4) and the relatioa 

,-a -1 
F^a.^a-b;-!) =2/7 (b-l)"   r(a-b + 2) 2  1 

1 

Lr(^a)r(|+p-b) 

i 

r(|+^a)r(l + |a-b)_ 
(1.8) 

which can be found in the same reference and page as (1.3), equation (1.7) becomes 

n+1 2 Q^O) - i(n+l)Q (0)--—- 
n n        .n„n+l 

i  2 Lr(| + 1)r(| + 1)  r(|+i)r(s+l)J 

Finally, with the help of (1.5) and (1.6), we obtain for (1.9), 

(1.9) 
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0^(0) TT (2n): 

(-4)n[r(n4)]' 
n = 0.1. (1.10) 

Q1      (0) = 
^2n+l 

7r(2n+l)'. 

(2i) 
2D+1 

n = 0.1. (I.U) 

We now employ equation (5.26) and write: 

For the Dirichlet Case 

u8f(p1)= -Pin,) 
o    1        ir    o   I 

st    v 2   „.,,/' 8       4 \ „ .    . 
U2(P1)=  -97P2(V+V-3-9^;Po(V 

"sW 

\W 

si 
u5 (p^ = 

»TT ^   TT 37r   ^ 

5257r 

525a- 

v97r TT       97r 

P4(V+(-1l + -iii)P2(V 
QTT        5677r 

/'64       80 508   ^ „ ,    v 

^       9n       20257r ^ 

Substituting these results in (5.25) we obtain 
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ike?. 
sf/    Y 2 4 2 2 

- P (n )+ikc—P (rjJ + k c v    o   I 2   o '1 97 W 

( 

T —* >— ^  » 'Am S 

n 

+ k c 4 2    TW    \JZ 8 X^ .    .     /^ 32      32 
vaTry    c   1 

+ ik c 
i- o^37r 
-hp4(v+(-7i+^Jp2(v 9ir       567^ 

80 508 
P (n,) + 

ir       OTT       202D7r 
«Ä6^ 

J 
(1.12) 

For the Neumann Case 

u8f(p1)=0 
o    1 

u^^) = 0 

«;£(Pl) = o 

USf(n  )  =   — p (n  )+_i-  p (n  ) 
4  -r       75^    3VV    757r     l^r 

277r 

and 
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ike?. 
sf e 

u  (pj) - — 
1 

,2 2   2   „ .    ,,4 4 
•kc ^pi(V-kc 

75»    3   1      75»     1    1 

„55     4     _ ■    v . ^/, 6 6, 
ik c    r P (rO + CKk c 

Tlr      1    1 \ 
(1.13) 

The results given by (1.12) and (1,13) are in complete agreement with those obtained 

by Senior (1960). 
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